7 research outputs found

    Cdk6: At the interface of Rb and p53

    No full text
    In cancer the activity of cyclin-dependent kinase 4-(CDK4) and cyclin-dependent kinase 6 (CDK6)-cyclin complexes are frequently altered with enhanced CDK6 expression found in hematopoietic malignancies. Our latest findings show a so far unknown role of Cdk6 during oncogene-induced stress and transformation. Therein Cdk6 antagonizes p53 responses and subsequently shapes the critical decision between survival and apoptosis in pre-leukemic cells

    Cdk4 and Cdk6 cooperate in counteracting the INK4 family of inhibitors during murine leukemogenesis.

    Get PDF
    Cdk4 and Cdk6 are related protein kinases that bind d-type cyclins and regulate cell-cycle progression. Cdk4/6 inhibitors are currently being used in advanced clinical trials and show great promise against many types of tumors. Cdk4 and Cdk6 are inhibited by INK4 proteins, which exert tumor-suppressing functions. To test the significance of this inhibitory mechanism, we generated knock-in mice that express a Cdk6 mutant (Cdk6 R31C) insensitive to INK4-mediated inhibition. Cdk6(R/R) mice display altered development of the hematopoietic system without enhanced tumor susceptibility, either in the presence or absence of p53. Unexpectedly, Cdk6 R31C impairs the potential of hematopoietic progenitors to repopulate upon adoptive transfer or after 5-fluorouracil-induced damage. The defects are overcome by eliminating sensitivity of cells to INK4 inhibitors by introducing the INK4-insensitive Cdk4 R24C allele, and INK4-resistant mice are more susceptible to hematopoietic and endocrine tumors. In BCR-ABL-transformed hematopoietic cells, Cdk6 R31C causes increased binding of p16(INK4a) to wild-type Cdk4, whereas cells harboring Cdk4 R24C and Cdk6 R31C are fully insensitive to INK4 inhibitors, resulting in accelerated disease onset. Our observations reveal that Cdk4 and Cdk6 cooperate in hematopoietic tumor development and suggest a role for Cdk6 in sequestering INK4 proteins away from Cdk4.This work was supported by grants from the Austrian Science Foundation (FWF) (SFB47 and P24297) (V.S.), fellowships from the Spanish Ministerio de Economia y Competitividad (MINECO) (E.R.-D., V.Q.), and grants from MINECO (SAF2012-38215), Fundacion Ramon Areces, the OncoCycle Programme (S2010/BMD-2470) from the Comunidad de Madrid, the OncoBIO Consolider-Ingenio 2010 Programme (CSD2007-00017) from MINECO, and the European Union Seventh Framework Programme (MitoSys project; HEALTH-F5-2010-241548) (M.M.).S

    CDK6 as a key regulator of hematopoietic and leukemic stem cell activation

    No full text
    The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in reg- ulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk62/2 HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more sus- ceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcrip- tional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABLp2101 LSCs. Transplantation with BCR- ABLp2101–infected bone marrow from Cdk62/2 mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk62/2 BCR-ABLp2101 LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs.Depto. de Bioquímica y Biología MolecularFac. de Ciencias BiológicasTRUEpu

    CDK6 as a key regulator of hematopoietic and leukemic stem cell activation

    No full text
    The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(−/−) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABL(p210+) LSCs. Transplantation with BCR-ABL(p210+)–infected bone marrow from Cdk6(−/−) mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6(−/−) BCR-ABL(p210+) LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs
    corecore