13,732 research outputs found

    Improved two-equation k-omega turbulence models for aerodynamic flows

    Get PDF
    Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows

    Assessment of higher order turbulence models for complex two- and three-dimensional flowfields

    Get PDF
    A numerical method is presented to solve the three-dimensional Navier-Stokes equations in combination with a full Reynolds-stress turbulence model. Computations will be shown for three complex flowfields. The results of the Reynolds-stress model will be compared with those predicted by two different versions of the k-omega model. It will be shown that an improved version of the k-omega model gives as accurate results as the Reynolds-stress model

    Target Fragmentation and Fracture Functions

    Get PDF
    We analyse recent data on the production of forward neutrons in deep inelastic scattering at HERA in the framework of a perturbative QCD description for semi-inclusive processes, which includes fracture functions.Comment: To be published in Proceedings of the Madrid low-x Workshop, Miraflores de la Sierra, June 18-21, 199

    Physics of Deformed Special Relativity: Relativity Principle revisited

    Full text link
    In many different ways, Deformed Special Relativity (DSR) has been argued to provide an effective limit of quantum gravity in almost-flat regime. Some experiments will soon be able to test some low energy effects of quantum gravity, and DSR is a very promising candidate to describe these latter. Unfortunately DSR is up to now plagued by many conceptual problems (in particular how it describes macroscopic objects) which forbids a definitive physical interpretation and clear predictions. Here we propose a consistent framework to interpret DSR. We extend the principle of relativity: the same way that Special Relativity showed us that the definition of a reference frame requires to specify its speed, we show that DSR implies that we must also take into account its mass. We further advocate a 5-dimensional point of view on DSR physics and the extension of the kinematical symmetry from the Poincare group to the Poincare-de Sitter group (ISO(4,1)). This leads us to introduce the concept of a pentamomentum and to take into account the renormalization of the DSR deformation parameter kappa. This allows the resolution of the "soccer ball problem" (definition of many-particle-states) and provides a physical interpretation of the non-commutativity and non-associativity of the addition the relativistic quadrimomentum. In particular, the coproduct of the kappa-Poincare algebra is interpreted as defining the law of change of reference frames and not the law of scattering. This point of view places DSR as a theory, half-way between Special Relativity and General Relativity, effectively implementing the Schwarzschild mass bound in a flat relativistic context.Comment: 24 pages, Revtex

    Non-Commutativity of Effective Space-Time Coordinates and the Minimal Length

    Full text link
    Considering that a position measurement can effectively involve a momentum-dependent shift and rescaling of the "true" space-time coordinates, we construct a set of effective space-time coordinates which are naturally non-commutative. They lead to a minimum length and are shown to be related to Snyder's coordinates and the five-dimensional formulation of Deformed Special Relativity. This effective approach then provides a natural physical interpretation for both the extra fifth dimension and the deformed momenta appearing in this context.Comment: 5 page

    Stochastic linear scaling for metals and non metals

    Full text link
    Total energy electronic structure calculations, based on density functional theory or on the more empirical tight binding approach, are generally believed to scale as the cube of the number of electrons. By using the localisaton property of the high temperature density matrix we present exact deterministic algorithms that scale linearly in one dimension and quadratically in all others. We also introduce a stochastic algorithm that scales linearly with system size. These results hold for metallic and non metallic systems and are substantiated by numerical calculations on model systems.Comment: 9 pages, 2 figure

    Scalar field theory in Snyder space-time: alternatives

    Get PDF
    We construct two types of scalar field theory on Snyder space-time. The first one is based on the natural momenta addition inherent to the coset momentum space. This construction uncovers a non-associative deformation of the Poincar\'e symmetries. The second one considers Snyder space-time as a subspace of a larger non-commutative space. We discuss different possibilities to restrict the extra-dimensional scalar field theory to a theory living only on Sndyer space-time and present the consequences of these restrictions on the Poincar\'e symmetries. We show moreover how the non-associative approach and the Doplicher-Fredenhagen-Roberts space can be seen as specific approximations of the extra-dimensional theory. These results are obtained for the 3d Euclidian Snyder space-time constructed from \SO(3,1)/\SO(3), but our results extend to any dimension and signature.Comment: 24 pages
    corecore