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We analyse recent data on the production of forward neutrons in deep inelastic

scattering at HERA in the framework of a perturbative QCD description for semi-

inclusive processes, which includes fracture functions.

In the most naive quark-parton model picture, the semi-inclusive cross

section for the production of a hadron h from the deep inelastic scattering of

charged leptons is usually taken to be given by 1:

d�hp

dx dy dzh
=

(1 + (1� y)2)

2y2

X
i=q;�q

ci fi=p(x)Dh=i(zh) ; (1)

where, fi=p is the parton distribution of avour i, Dh=i is the fragmentation

function of a hadron h from a parton i, and ci = 4�e2qi�
2=x(P + l)2. The

kinematical variables used to characterize these processes are:

x =
Q2

2P � q
; y =

P � q

P � l
; zh =

P � h

p � q
=

Eh

Ep(1� x)

1� cos �h

2
; (2)

where q is the transferred momentum (�q2 = Q2), l and P are the incoming

lepton and proton momenta respectively. Eh, Ep and �h are the produced

hadron and target nucleon energies, and the angle between the hadron and the

target in the centre of mass of the virtual photon-proton system, respectively.

Although next to leading order corrections to this cross section are also well

known, and have been shown to give a very good description of the so-called

current fragmentation region (�h > �=2), the target fragmentation region,

which corresponds to �h = 0 (zh = 0), cannot be described with this simpli�ed

picture. First of all, it is easy to see that, at the lowest order, hadrons can

only be produced antiparallel to the target nucleon (�h = �), excluding the

forward con�gurations. On the other hand, going to next to leading order,
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the corrections to the cross section develop divergences proportional to 1=zh,

related to soft emission (Eh = 0), and also to collinear con�gurations where

hadrons are produced in the direction of the remnant target (�h = 0). Since at

lowest order hadrons cannot be produced in that direction, it is not possible to

factorize the divergence, as usual, into parton distributions and fragmentation

functions. Then, in order to describe hadrons produced in the target frag-

mentation region even at the lowest order, and also to be able to perform at

higher orders a consistent factorization of divergences originated in the current

fragmentation region, a new distribution has to be introduced, the so-called

fracture functions, Mi;h=N (x; (1 � x)z) 2;3. These distributions represent the

probability of �nding a parton of avour i and a hadron h in the target N

(here z = Eh=Ep(1� x)).

Therefore the complete leading order expression for the cross section be-

comes

d�hp

dx dy dz
=

(1 + (1� y)2)

2y2

X
i=q;�q

ci
�
fi=p(x)Dh=i(z)

+ (1� x)Mi;h=p(x; (1� x)z)
�
: (3)

Higher order corrections to this kind of cross section can be found in refs. 3;4;5.

The scale dependence of fracture functions at O(�s) is driven by two kinds

of processes, which contribute to the production of hadrons in the remnant

target direction: the emission of collinear partons from those found in the

target (the usual source of scale dependence of parton distributions, often

called homogeneous evolution), and those where partons radiated from the

one to be struck by the virtual probe, fragment into the measured hadron (the

so-called inhomogeneous term). These two contributions lead at leading order

to the following equation:
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where P i
j (u) and P̂

i;l
j (u) are the regularized and real Altarelli-Parisi splitting

functions, respectively.

Recently, the ZEUS Collaboration has measured DIS events identifying

high-energy neutrons in the �nal state 6, at very small angles with respect to

the proton direction (�lab � 0:75 mrad), in the kinematical range given by

3�10�4 < x < 6�10�3, 10 < Q2 < 100 GeV2 and high xL ' z(1�x) > 0:30.
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The ZEUS Collaboration have reported that events with xL � 0:50 represent

a substantial fraction (of the order of 10%) of DIS events. In the framework of

a picture for semi-inclusive processes including fracture functions, as the one

outlined above, the ZEUS �ndings can be represented (at LO) by

R 1�x
0:50

d�hp
dx dy dxL

dxL
d�p
dx dy

�

R 1�x
0:50

M
n=p
2

�
x; xL; Q

2
�
dxL

F
p
2 (x;Q

2)
: (5)

In eq.(5) we have also de�ned the equivalent to F2 for fracture functions:

M
n=p
2 (x; xL; Q

2) � x
P

i e
2
i Mi;n=p(x; xL; Q

2) and we have made explicit the

integration over a �nite (measured) range of xL.

In �g. 1 we show the experimental outcome for this fracture function (as

de�ned in eq. (5) and at Q2 = 10 GeV2, taking advantage of the negligible

Q2 dependence of the data), and we compare it to F
p
2 and F

p
L. We also show

the contribution to the same observable coming from current fragmentation

processes, which is pure NLO and it is about 8 orders of magnitude smaller

than the experimental data.

Fracture functions, as parton distributions in general, are essentially of a

non-perturbative nature and have to be extracted from experiment. However,

their close relation with fragmentation and structure functions allows in certain

extreme cases a model estimate for them, which can then be compared with

actual measurements and evolved with the corresponding evolution equations.

As an example, recently, a very sensible model estimate for the production of

forward hadrons in DIS 7, exploiting the idea of non-perturbative Fock com-

ponents of the nucleon has been proposed. In this approach the semi-inclusive

DIS cross sections, and through them the corresponding fracture functions at a

certain input scale Q2
0, can be interpreted as the product of a ux of neutrons

in the proton (integrated over p2T ) times the structure function of the pion

exchanged between them, i.e.

M
n=p
2

�
x; xL; Q

2
0

�
' �n=p(xL)F

�+

2

�
x

1� xL
; Q2

0

�
: (6)

Using a non-perturbative computation of the ux, which is in very good agree-

ment with experimental data on high energy neutron and �++ production in

hadron-hadron collisions and a parametrization for the pion structure function
8, in �g. 1 we make a comparison between the model estimate and the data

for Q2
0 = 10 GeV2, �nding a remarkable agreement between them.

The success of the model estimate encourages us to go further and use

the functional dependence of fracture functions, induced by the model and

corroborated by the data, to analyse also the Q2 dependence.
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Figure 1: Fracture function of neutrons in protons as measured by ZEUS compared to the

model prediction and current fragmentation contributions

We �rst analyse the more familar process of neutron production. Since

the probability of current parton fragmentation into a neutron (given by frag-

mentation functions) is comparatively small with respect to that of processes

originated in the target (fracture functions), no signi�cant e�ects are expected

in the scale evolution arising from the inhomogeneous term in this process.

The evolution is mainly driven by the usual homogeneous term of the evo-

lution equations leading to an almost constant ratio between the number of

neutron tagged events and that of all DIS events, as observed by ZEUS.

However, the scale dependence induced in the cross section for the pro-

duction of pions, at least in the kinematical region of very small x and small

xL, can be considerably a�ected by the inhomogeneity, given that soft pions

are produced more copiously from quarks than from neutrons. In order to

analyse these features of the evolution, we estimate the proton to pion frac-

ture function at some input scale Q2
0 using the same ideas formerly applied to

neutron production, and noticing that the ux can be straightforwardly ob-

tained from the one used in the last section by means of the crossing relation

��+=p(xL) = ��
+

n=p(1� xL). Then, the proton to pion fracture function can be

approximated by

M
�+=p
2

�
x; xL; Q

2
0

�
' ��+=p(xL)F

n
2

�
x

1� xL
; Q2

0

�
: (7)

In �g. 2a we show the model estimates for proton to pion fracture functions
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(taking Q2
0 = 4 GeV2), integrated over two di�erent bins of xL, compared

with the contribution coming from the current fragmentation processes. We

assume here the same restrictions as in the data from the ZEUS Collaboration

for neutron production.

Figure 2: a) Prediction for the fracture function of �+ in protons for two di�erent bins of

xL and the current fragmentation contribution. b) Evolution of the fracture function of �+

in protons for xL = 0:50 and Q2
0
= 1 GeV2, c) xL = 0:10, and d) Q2

0
= 4 GeV2

Of course, the model is not expected to work over the whole kinematical

region and, in fact, any deviation from the scale dependence implied in eq.

(8) (note that the ux is assumed to be Q2 independent) would show the

breakdown of the approximated factorization hypotesis. However, the ansatz

in eq. (8) can be taken as an e�ective relation, valid at some initial value of

Q2
0, for which the estimated ux is adequate, and therefore provides a sensible

input distribution. As usual, the correct scale dependence is that given by the

evolution equations for fracture functions, and that is the aim of our next step.

In order to study the e�ect of the inhomogeneity in the evolution we take

di�erent values of xL, and keep them �xed while we analyse the x and Q2

dependence of fracture functions induced by both the homogeneous and the

complete evolution equations. In �g. 2b we show the result of an evolution
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from Q2
0 = 1 GeV2 at xL = 0:50. Both solutions, the homogeneous (dotted

line) and the complete (solid line) are superimposed, the di�erence being less

than 0:1%. These behaviours are perfectly compatible with the results ob-

tained by the ZEUS Collaboration in the case of neutron production (where

the inhomogeneity contributes about 10 times less) in the same kinematical

region, where no di�erence has been found in the evolution between F2 and

M2.

However, for smaller xL the situation is completely di�erent. As the frag-

mentation function increases with lower values of the argument, the inhomoge-

neous contribution becomes much more relevant and its e�ect in the evolution

is sizeable. In fact, �g. 2c shows the evolution result for xL = 0:10 and Q2
0 = 1

GeV2, where the full evolution results outsize the homogeneous one by a factor

of 4 at small x. These corrections are smaller if the ansatz of eq. (8) is assumed

to be valid at values of Q2
0 = 4 GeV2 (�g. 2d) but still remain considerable.

Concluding, in this paper we have analysed recent experimental data on the

production of forward neutrons in DIS in terms of fracture functions, �nding

that the main features of the data can be fairly reproduced by this perturbative

QCD approach, once a non-perturbative model estimate for the input fracture

functions is given. Studying the evolution properties of these fracture functions

in the speci�c case of forward pions in the �nal state, we have found that the

e�ects of the inhomogeneous term in the evolution equations are large and

measurable, particularly in the kinematical region of very small x and small

xL. These e�ects are negligible for large values of xL, justifying the use of

the usual homogeneous Altarelli-Parisi equations for, as an example, the t-

integrated di�ractive structure function F
D(3)

2 (x
IP
; �;Q2), which is just the

fracture function of protons in protons M
p=p
2

�
�x

IP
; (1� x

IP
); Q2

�
9.
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