19 research outputs found

    Single and Repeated Administration of Methylphenidate Modulates Synaptic Plasticity in Opposite Directions via Insertion of AMPA Receptors in Rat Hippocampal Neurons

    Get PDF
    Methylphenidate (MPH) is widely used in the treatment of Attention Deficit Hyperactivity Disorder. Several lines of evidence support that MPH can modulate learning and memory processes in different ways including improvement and impairment of test performances. A relevant factor in the efficacy of treatment is whether administration is performed once or several times. In this study we demonstrate opposite effects of MPH on performance of preadolescent rats in the Morris Water Maze test. Animals treated with a single dose (1 mg/kg) performed significantly better compared to controls, while in animals treated with repetitive administration at the same concentration performance was reduced. We found that hippocampal LTP in slices from rats treated with a single dose was increased, while LTP from rats treated with repetitive injections of MPH was lower than in controls. Using Western blot of CA1 areas from potentiated slices of rats treated with a single dose we found a significant increase of phosphorylation at Ser845 of GluA1 subunits, associated to an increased insertion of GluA1-containing AMPARs in the plasma membrane. These receptors were functional, because AMPA-dependent EPSCs recorded on CA1 were enhanced, associated to a significant increase in short-term plasticity. In contrast, CA1 samples from rats injected with MPH during six consecutive days, showed a significant decrease in the phosphorylation at Ser845 of GluA1 subunits associated to a lower insertion of GluA1-containing AMPARs. Accordingly, a reduction of the AMPA-mediated EPSCs and short-term plasticity was also observed. Taken together, our results demonstrate that single and repeated doses with MPH can induce opposite effects at behavioral, cellular, and molecular levels. The mechanisms demonstrated here in preadolescent rats are relevant to understand the effects of this psychostimulant in the treatment of ADHD

    Intracellular pH regulation in rat round spermatids

    No full text
    Intracellular pH has been shown to be an important physiological parameter in cell cycle control and differentiation, aspects that are central to the spermatogenic process. However, the pH regulatory mechanisms in spermatogenic cells have not been systematically explored. In this work, measuring intracellular pH (pH(i)) with a fluorescent probe (BCECF), membrane potential with a fluorescent lipophilic anion (bisoxonol), and net movement of acid using a pH-stat system, we have found that rat round spermatids regulate pH(i) by means of a V-type H+-ATPase, a HCO3- entry pathway, a Na+/HCO3- dependent transport system, and a putative proton conductive pathway. Rat spermatids do not have functional base extruder transport systems. These pH regulatory characteristics seem specially designed to withstand acid challenges, and can generate sustained alkalinization upon acid exit stimulation

    Differential Distribution and Activity Profile of Acylpeptide Hydrolase in the Rat Seminiferous Epithelium

    No full text
    Acylpeptide hydrolase (APEH) is a serine protease involved in amino acid recycling from acylated peptides (exopeptidase activity) and degradation of oxidized proteins (endoproteinase activity). This enzyme is inhibited by dichlorvos (DDVP), an organophosphate compound used as an insecticide. The role of APEH in spermatogenesis has not been established; therefore, the aim of this study was to characterize the distribution and activity profile of APEH during this process. For this purpose, cryosections of male reproductive tissues (testis and epididymis) and isolated cells (Sertoli cells, germ cells, and spermatozoa) were obtained from adult rats in order to analyze the intracellular localization of APEH by indirect immunofluorescence. In addition, the catalytic activity profiles of APEH in the different male reproductive tissues and isolated cells were quantified. Our results show that APEH is homogeneously distributed in Sertoli cells and early germ cells (spermatocytes and round spermatids), but this pattern changes during spermiogenesis. Specifically, in elongated spermatids and spermatozoa, APEH was localized in the acrosome and the principal piece. The exopeptidase activity was higher in the germ cell pool, compared to sperm and Sertoli cells, while the endoproteinase activity in epididymal homogenates was higher compared to testis homogenates at 24 h of incubation. In isolated cells, this activity was increased in Sertoli and germ cell pools, compared to spermatozoa. Taken together, these results indicate that APEH is differentially distributed in the testicular epithelium and undergoes re-localization during spermiogenesis. A possible role of APEH as a component of a protection system against oxidative stress and during sperm capacitation is discussed

    Possible involvement of plasma antioxidant defences in training-associated decrease of platelet reponsiveness in humans

    Get PDF
    Artículo de publicación ISIHealth effects of pesticides are easily diagnosed when acute poisonings occurs, nevertheless, consequences from chronic exposure can only be observed when neuropsychiatric, neurodegenerative or oncologic pathologies appear. Therefore, early monitoring of this type of exposure is especially relevant to avoid the consequences of pathologies previously described; especially concerning workers exposed to pesticides on the job. For acute organophosphate pesticides (OPP) exposure, two biomarkers have been validated: plasma cholinesterase (ChE) and acetylcholinesterase (AChE) from erythrocytes. These enzymes become inhibited when people are exposed to high doses of organophosphate pesticides, along with clear signs and symptoms of acute poisoning; therefore, they do not serve to identify risk from chronic exposure. This study aims to assess a novel biomarker that could reflect neuropsychological deterioration associated with long-term exposure to organophosphate pesticides via the enzyme acylpeptide-hydrolase (ACPH), which has been recently identified as a direct target of action for some organophosphate compounds.The project Fondef D09I1057 was founded by FONDEF Fondo de Fomento al Desarrollo Científico y Tecnológico, CONICYT Chile (Fund for the promotion of scientific and technological development, National Commission for Scientific and Technological Research, Chile)

    Reduced neurobehavioral functioning in agricultural workers and rural inhabitants exposed to pesticides in northern Chile and its association with blood biomarkers inhibition

    No full text
    Background Previous biomonitoring studies have shown that people in the rural population of Coquimbo, the major agricultural area in northern Chile are being occupationally and environmentally exposed to organophosphate/carbamate (OP/CB) pesticides. Given their harmful effects, this study had two aims; first, to evaluate the effect of cumulative or chronic exposure to OP/CB pesticides on the neurobehavioral performance of agricultural workers and rural inhabitants; second, to determine if changes in the neurobehavioral performance are associated to changes in blood biomarkers of OP/CB pesticides during the spray season, when exposure is higher. Methods For the first aim, a cross sectional study of neurobehavioral performance in adult volunteers (men and women, 18-50 years-old, right-handed) was carried out in the pre-spray season. Sampling was done by convenience and a questionnaire was used to categorize participants depending on their level of chronic exposure, as either: occupationally exposed (OE,n = 87), environmentally exposed (EE,n = 81), or non-exposed controls or reference group (RG,n = 100). A neurobehavioral test battery consisting of 21 tests to measure cognitive, motor and emotional state was applied. For the second aim, neurobehavioral measures were taken a second time from EE and OE groups during the spray season, and their exposure corroborated by blood-based biomarker inhibition. Results Lower neurobehavioral performance was observed in the pre-spray evaluation of EE and OE groups compared to the non-exposed, OE being the worst performing group. Seasonal exposure impaired performance in both exposure groups on all tests except those on attention and mood. Data modeling of the basal (pre-spray) measurements showed that the level of exposure was the best predictor of performance. During spraying, inhibition of BChE activity in the EE group was the best predictor of low performance in tests measuring logical, auditory and visual memory, inhibitory control of cognitive interference, constructional and planning abilities, executive functions, and motor speed and coordination. Conclusion Long-term occupational or environmental exposure to pesticides caused impairment in neurobehavioral functioning, which worsened during the spraying season, mainly in EE. BChE inhibition was the best predictor for seasonal neurobehavioral changes in EE.chilean government through Fondo de Fomento al Desarrollo Cientifico y Tecnologico (FONDEF) D09I1057 Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 312023
    corecore