46 research outputs found

    On the Connectedness and Diameter of a Geometric Johnson Graph

    Full text link
    Let PP be a set of nn points in general position in the plane. A subset II of PP is called an \emph{island} if there exists a convex set CC such that I=PCI = P \cap C. In this paper we define the \emph{generalized island Johnson graph} of PP as the graph whose vertex consists of all islands of PP of cardinality kk, two of which are adjacent if their intersection consists of exactly ll elements. We show that for large enough values of nn, this graph is connected, and give upper and lower bounds on its diameter

    Balanced Islands in Two Colored Point Sets in the Plane

    Get PDF
    Let SS be a set of nn points in general position in the plane, rr of which are red and bb of which are blue. In this paper we prove that there exist: for every α[0,12]\alpha \in \left [ 0,\frac{1}{2} \right ], a convex set containing exactly αr\lceil \alpha r\rceil red points and exactly αb\lceil \alpha b \rceil blue points of SS; a convex set containing exactly r+12\left \lceil \frac{r+1}{2}\right \rceil red points and exactly b+12\left \lceil \frac{b+1}{2}\right \rceil blue points of SS. Furthermore, we present polynomial time algorithms to find these convex sets. In the first case we provide an O(n4)O(n^4) time algorithm and an O(n2logn)O(n^2\log n) time algorithm in the second case. Finally, if αr+αb\lceil \alpha r\rceil+\lceil \alpha b\rceil is small, that is, not much larger than 13n\frac{1}{3}n, we improve the running time to O(nlogn)O(n \log n)

    Matching random colored points with rectangles

    Get PDF
    Let S[0,1]2 be a set of n points, randomly and uniformly selected. Let RB be a random partition, or coloring, of S in which each point of S is included in R uniformly at random with probability 1/2. We study the random variable M(n) equal to the number of points of S that are covered by the rectangles of a maximum strong matching of S with axis-aligned rectangles. The matching consists of closed rectangles that cover exactly two points of S of the same color. A matching is strong if all its rectangles are pairwise disjoint. We prove that almost surely M(n)=0.83n for n large enough. Our approach is based on modeling a deterministic greedy matching algorithm, that runs over the random point set, as a Markov chain.Research supported by projects MTM2015-63791-R MINECO/FEDER and Gen. Cat. DGR 2017SGR1640Postprint (author's final draft

    Rainbow polygons for colored point sets in the plane

    Full text link
    Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let rb-index(S)\operatorname{rb-index}(S) denote the smallest size of a perfect rainbow polygon for a colored point set SS, and let rb-index(k)\operatorname{rb-index}(k) be the maximum of rb-index(S)\operatorname{rb-index}(S) over all kk-colored point sets in general position; that is, every kk-colored point set SS has a perfect rainbow polygon with at most rb-index(k)\operatorname{rb-index}(k) vertices. In this paper, we determine the values of rb-index(k)\operatorname{rb-index}(k) up to k=7k=7, which is the first case where rb-index(k)k\operatorname{rb-index}(k)\neq k, and we prove that for k5k\ge 5, 40(k1)/2819rb-index(k)10k7+11. \frac{40\lfloor (k-1)/2 \rfloor -8}{19} %Birgit: \leq\operatorname{rb-index}(k)\leq 10 \bigg\lfloor\frac{k}{7}\bigg\rfloor + 11. Furthermore, for a kk-colored set of nn points in the plane in general position, a perfect rainbow polygon with at most 10k7+1110 \lfloor\frac{k}{7}\rfloor + 11 vertices can be computed in O(nlogn)O(n\log n) time.Comment: 23 pages, 11 figures, to appear at Discrete Mathematic

    Edge-Removal and Non-Crossing Configurations in Geometric Graphs

    Get PDF
    A geometric graph is a graph G = (V;E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V . We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.Postprint (published version

    On the chromatic number of some flip graphs

    Get PDF
    Graphs and Algorithm
    corecore