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3 Departament de Matemàtiques, Universitat Politècnica de Catalunya, Spain,
clemens.huemer@upc.edu
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Abstract. Let S ⊂ [0, 1]2 be a set of n points, randomly and uniformly
selected. Let R∪B be a random partition, or coloring, of S in which each
point of S is included in R uniformly at random with probability 1/2. We
study the random variable M(n) equal to the number of points of S that
are covered by the rectangles of a maximum strong matching of S with
axis-aligned rectangles. The matching consists of closed rectangles that
cover exactly two points of S of the same color. A matching is strong
if all its rectangles are pairwise disjoint. We prove that almost surely
M(n) ≥ 0.83n for n large enough. Our approach is based on modeling
a deterministic greedy matching algorithm, that runs over the random
point set, as a Markov chain.

1 Introduction

Given a point set S ⊂ R2 of n points, and a class C of geometric objects, a
geometric matching of S is a set M ⊆ C such that each element of M contains
exactly two points of S and every point of S lies in at most one element of M .
A geometric matching is strong if the geometric objects are pairwise disjoint,
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Fig. 1: (a) A perfect, strong bichromatic matching of 10 red points and 10 blue
points with segments. (b) A perfect, strong monochromatic matching of 6 red
points and 4 blue points with axis-aligned rectangles.

and perfect if every point of S belongs to (or is covered by) some element of M .
This type of geometric matching problems was considered by Ábrego et al. [1],
who studied the existence and properties of matchings for point sets in the plane
when C is the class of axis-aligned squares, or the class of disks.

Let S = R∪B ⊂ R2 be a set of n colored points in the plane, each point col-
ored red or blue, where R and B are the sets of red and blue points, respectively.
A geometric matching of S is called monochromatic if all matching objects cover
points of the same color, and bichromatic if all matching objects cover points
of different colors. For example, monochromatic matchings of two-colored point
sets in the plane with straight segments have been studied [4,5]. In the case
of bichromatic matchings with straight segments, a classical result in discrete
geometry asserts that for any planar point set S consisting of n red points and
n blue points in general position (i.e., no three points of S are collinear) there
exists a perfect, strong bichromatic matching of S with straight segments [6] (see
Figure 1a).

In this paper, we consider strong monochromatic matchings with axis-aligned
rectangles. Refer to Figure 1b for an example of a perfect matching of this type.
Throughout the paper, every rectangle will be considered axis-aligned and a
closed subset of the plane.

Caraballo et al. [2] studied both monochromatic and bichromatic strong
matchings of S with rectangles from the algorithmic point of view. That is,
they studied two combinatorial optimization problems for given S = R∪B: find
a monochromatic strong matching of S with the maximum number of rectangles,
and find a bichromatic strong matching of S with the maximum number of rect-
angles; proving that both problems are NP-hard and giving a polynomial-time
4-approximation algorithm in each case. As noted by Caraballo et al., these two
problems are special cases of the Maximum Independent Set of Rectangles prob-
lem (MISR): Given a finite set R of rectangles in the plane, find a subset R′ ⊆ R
of maximum cardinality, denoted α(R), such that every pair of rectangles in R′
are disjoint.



Indeed, suppose that we want to find a monochromatic matching of S with
the maximum number of rectangles. For every distinct p, q ∈ R2, let D(p, q)
denote the minimum axis-aligned rectangle (i.e., the rectangle such that both
dimensions are minimum) that encloses p and q. Let R(S) be the set of all
rectangles D(p, q) such that p, q ∈ S, p and q have the same color, and D(p, q)
contains no points of S different from p and q. Finding a monochromatic strong
matching of S with the maximum number of rectangles is equivalent to finding in
R(S) a maximum subset of pairwise disjoint rectangles, whose size is α(R(S)),
that is, solving the MISR problem in R(S).

In this paper, we study monochromatic strong matchings of S with rectangles
from the combinatorial point of view. From this point forward, every rectangle
will cover precisely two points of S. Point sets S = R ∪ B exist in which no
matching rectangle is possible (e.g., S is a color-alternating sequence of points on
the line y = x), and point sets in which a perfect strong matching with rectangles
exists (e.g., an even number of red points in the negative part of the line y = x,
and an even number of blue points in the positive part). These two extreme
cases show that it is not worth studying the number α(R(S)) for fixed, or given,
colored point sets S. This does not happen, for example, for monochromatic
strong matchings with segments for fixed sets of red and blue points: Dumitrescu
and Kaye [4] proved that every two-colored point set S = R ∪ B of n points in
general position admits a strong matching with segments that covers at least
6
7n − O(1) of the points; furthermore, there exist n-point sets such that every
strong matching with segments covers at most 94

95n + O(1) points. Instead, we
want to study α(R(S)) when S is a random point set in the square [0, 1]2, in
which the positions of the n points of S are random and the color of each point
of S is also random. Formally:

Let n > 0 be an integer, and let S ⊂ [0, 1]2 be a set of n points, randomly
and uniformly selected. Let R ∪B be a random partition (i.e., coloring) of S in
which each point of S is included in R uniformly at random with probability
1/2. We study the random variable M(n) = 2 · α(R(S)) equal to the number
of points of S that are covered by the rectangles of a maximum monochromatic
strong matching of S with rectangles.

Given a set S of n points, randomly and uniformly selected in the square
[0, 1]2, Chen et al. [3] studied a similar variable: the random variable α(D(S)),
where D(S) is the random graph with vertex set S and two points p, q ∈ S define
an edge if and only if D(p, q) ∩ S = {p, q}. Here, α(D(S)) denotes the size of a
maximum independent set of D(S).

One result of Chen et al. [3, Theorem 1] states that if n tends to infinity,
then α(D(S)) = O(n(log2 log n)/ log n) with probability tending to 1. This result
implies that if C(n) denotes the number of points of S that are covered by a
maximum monochromatic matching of S with rectangles, where the rectangles
may overlap (i.e., the matching is not necessarily strong), then C(n) = n− o(n)
with probability tending to 1. In fact, let M ′ be a maximum monochromatic
matching of S with rectangles, where M ′ is not necessarily strong, and let S′ ⊂ S
be the points not covered by M ′. Note that at least |S′|/2 points of S′ have



the same color, and they form an independent set in the graph D(S). Then,
with probability tending to 1, we have that M ′ covers at least n − |S′| = n −
O(n(log2 log n)/ log n) = n− o(n) points.

2 Preliminaries

Since for matching S with rectangles, only the left-to-right and bottom-to-top
orders of S are relevant, and since the probability that two points of S are in
the same vertical or horizontal line is zero, we consider S equal to the point
set Sπ = {(i, π(i)) | i = 1, 2, . . . , n}, where π : {1, 2, . . . , n} → {1, 2, . . . , n} is a
randomly and uniformly selected permutation. This assumption was also done
by Chen et al. [3].

We have implemented a Python program that, given n, generates a uni-
form random permutation π, and selects the color of each p ∈ Sπ (red or blue)
randomly and uniformly with probability 1/2. The program then runs a deter-
ministic algorithm on Sπ = R ∪ B that greedily finds a maximum independent
subset of rectangles in R(Sπ). The greedy algorithm iterates the points of Sπ
from left to right, and for each point p in the iteration, it performs the following
action: If p is not matched with any point prior to p in the iteration, it finds
(if it exists) the first point q to the right of p such that D(p, q) ∈ R(Sπ) and
D(p, q) has empty intersection with all matching rectangles already reported. If
q exists, then the algorithm reports D(p, q) as a matching rectangle. In any case,
regardless of whether q exists, the algorithm continues the iteration to the next
unmatched point p.

For large n, say n = 10000, the implemented algorithm reports a matching
covering approximately 97

100n of the points. In fact, we run the algorithm N = 100
times for n = 10000, and average the outputs (i.e., the percentage of matched
points) and computed the standard deviation. The average output is 0.978 and
the standard deviation 0.0022. See in Table 1 the row k = ∞, where k is a
parameter that will be explained later.

Then, it seems that M(n) ≥ 97
100n for n large enough and probability close

to 1. More formally, using the Central Limit theorem, we have that(
0.9780− 0.0022√

N
z0.99, 1

]
⊂ (0.97, 1]

is a 99% confidence interval for the expected value of M(n)/n. We denote by
z0.99 ≈ 2.33 the real value which satisfies Prob(Z ≤ z0.99) = 0.99, for Z a normal
random variable with mean 0 and variance 1.

Analyzing the algorithm, when run over the random Sπ, seems to be a good
approach for obtaining a high lower bound for M(n). One way to analyze the
algorithm is to consider a parameterized version of it, with a parameter k, such
that each unmatched point p finds its match point q among only the next k
points of Sπ to the right of p. Let Ak denote this parameterized algorithm. For
further experimental results, see Table 1.



n = 1000 n = 10000

k mean sdev mean sdev

1 0.6653 0.0175 0.6673 0.0052

2 0.7948 0.0104 0.7934 0.0036

3 0.8301 0.0097 0.8304 0.0034

4 0.8555 0.0094 0.8562 0.0028

5 0.8727 0.0090 0.8736 0.0026

6 0.8860 0.0087 0.8864 0.0026

7 0.8953 0.0084 0.8962 0.0026

8 0.9031 0.0079 0.9041 0.0025

∞ 0.9724 0.0062 0.9780 0.0022

Table 1: The table shows the experimental results obtained when running the
greedy matching algorithm for n ∈ {1000, 10000} points, parameterized with k ∈
{1, 2, 3, . . . , 8}, or not parameterized (k = ∞). For each combination of n, k, we run
the algorithm 100 times, and measured the mean and standard deviation of the ratio
between the total number of matched points and n.

In the next two sections, we show how to model (an adaptation of) Ak as a
Markov chain, for any fixed k ∈ {1, 2, 3, . . .}. Then, we show that the algorithm
A3 almost surely guarantees M(n) ≥ 83

100n, for n large enough, by computing the
stationary distribution of the Markov chain and applying the Ergodic theorem.
For the theory on Markov chains, refer to Norris [7].

3 The Markov chains

From this point forward, we also consider S = Sπ, and whenever we say point i,
for i ∈ {1, 2, . . . , n}, or just i when it is clear from the context, we are referring
to the point pi := (i, π(i)) ∈ S. Let color(i) ∈ {R,B} be the color of point i.

Let k ∈ {1, 2, 3, . . .} be a constant, and let Ãk be the following adaptation of
algorithm Ak, consisting in the next idea:

Suppose that Ak matches points i and j, with i < j ≤ i + k, when the
iteration of Sπ is on point i. Algorithm Ãk iterates Sπ from left to right, and
will also match i and j but, in contrast with Ak, when the iteration is on j, or on
a point to the right of j. Using Ãk instead of Ak, allows us to describe in a more
compact way the states of the memory of the algorithm during the iteration of
the elements of Sπ.

Let E(j) be the data structure associated with point j ∈ {1, 2, . . . , n}, that
is maintained by Ãk during the iteration of Sπ. For any j, let i = i(j) be the
smallest element in the set {max(1, j − (k − 1)), . . . , j} such that the point i is
not matched, and each point in {i + 1, . . . , j} is matched with a point to the
left of i or is not yet matched. If i exists, then E(j) consists of the following
elements:



– The set U(j) ⊆ {i, i + 1, . . . , j} of the points that are not matched, with
i ∈ U(j).

– The set Rect(j) of the (pairwise disjoint) rectangles that match the points
in {i+ 1, . . . , j} \ U(j) with points to the left of i.

– The number f(j) of points of Sπ that are matched while the iteration is at
point j.

Otherwise, if i does not exist, then E(j) consists of the same three above
elements with U(j) = ∅ and Rect(j) = ∅.

For j = 1, we have U(1) = {1}, Rect(1) = ∅, and f(1) = 0. We show now
how to obtain E(j + 1) from E(j), for any j ∈ {1, . . . , n− 1}.

First, we match points i and j + 1 if and only if j + 1 ≤ i + k, color(i) =
color(j + 1), and the rectangle D(pi, pj+1) does not overlap any rectangle in
Rect(j).

After that, we match other points in (U(j) \ {i}) ∪ {j + 1} if and only if
i was matched in the previous step, or we have finished with point i. We say
that we have finished with point i if there do not exist more chances for point
i to be matched, which is equivalent to i + k ≤ j + 1. This final matching
procedure consists in running the original algorithm Ak with input the points
{i+ 1, . . . , j, j + 1}, but with the extra condition that the algorithm terminates
if the current point t on the iteration of {i + 1, . . . , j, j + 1} from left to right,
cannot be matched with any other one to its right (i.e., the matching on points
in (U(j)\{i})∪{j+1} is performed by running the original algorithm Ak). This
is because t must find its match among the points in {j + 2, . . . , t + k}, before
any matching between points in {t+ 1, . . . , j + 1} occurs.

We set f(j + 1) equal to the total number of points matched at iteration j.
Obtaining U(j + 1) and Rect(j + 1) is straightforward.

Let j ∈ {1, 2, . . . , n}. The state of E(j) is a 2-tuple formed by:
As first component, (a certificate of) the relative positions between the points

of U(j) and the rectangles of Rect(j), together with the color of each point of
U(j). If the leftmost point is colored blue, then we switch the color of every
point such that the leftmost one is always red.

As second component, the number f(j) of matched points. We say that two
states e and e′ are equal (i.e., e = e′) if: (i) the first components are equal, or
one first component is symmetric to the other in the vertical direction, and (ii)
the second components are equal.

Let E = {e1, e2, . . . , eN} denote the set of all possible states of E(j), which
is a finite set, and let Xj ∈ E be the random variable equal to the state of
E(j). Let e ∈ E be a state, and assume that e is the state of E(j) for some j.
Let f(e) = f(j) (with abuse of notation), and let N(e) be the neighborhood of
e, which is the multiset consisting of the state of E(j + 1) for every color and
every different relative position, with respect to the elements of both U(j) and
Rect(j), of point j + 1. See for example Figure 2.

Lemma 1. Let e, e′ ∈ E be two states. For every j ≥ 2, we have:

Prob(Xj+1 = e′ | Xj = e) =
m

2 (|U(j)|+ 2|Rect(j)|+ 1)
,
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Fig. 2: (a) Example of the data structure E(j), its state Xj = e3, and the states
in the neighborhood N(e3) = {e4, e5, e6, e6, e7, e8} corresponding to E(j + 1),
for each position and color of point j + 1. Note that f(e6) = 2, and f(ei) = 0
for all ei ∈ {e4, e5, e7, e8}. (b) Example of E(j) and its state Xj = e5, with
N(e5) = {e10, e10, e10, e10, e10, e10, e11, e11}. Note that f(e10) = 2 and f(e11) =
4. For every of the four positions of the blue point j + 1, the resulting state is
e10.

where m is the multiplicity of e′ in N(e).

Proof. Through each point of U(j) draw a horizontal line, and for each rectangle
of Rect(j) draw a horizontal line through the top side and a horizontal line
through the bottom side. Each of theseK = |U(j)|+2|Rect(j)| lines goes through
a different element of Sπ, and they subdivide the plane into K + 1 strips. Since
the point j + 1 is to the right of both every point of U(j) and every rectangle of
Rect(j), the relative position of point j+ 1 with respect to the elements of U(j)
and Rect(j) is to be in one of these strips, and this happens with probability
1/(K+ 1). Furthermore, the color of point j+ 1 is given with probability 1

2 . The
lemma follows. ut

Note that the value of Xj+1 depends on the value of Xj , and does not depend
in any of the values of X1, X2, . . . , Xj−1. Formally,

Prob(Xj+1 = xj+1 | Xj = xj , . . . , X1 = x1) = Prob(Xj+1 = xj+1 | Xj = xj)

for all x1, . . . , xj+1 ∈ E such that Prob(Xj = xj , . . . , X1 = x1) > 0.



Thus, the sequence (Xn)n≥1 is a Markov chain, denoted Ck, over the set
E = {e1, e2, . . . , eN} of states. Let P denote the transition matrix, of dimensions
N × N , such that Pi,j = Prob(X`+1 = ej | X` = ei). The key observation is

that the total number of points matched by the algorithm Ãk, denoted Mk(n),
is precisely

Mk(n) =

n∑
j=1

f(Xj).

A Markov chain is irreducible if with positive probability any state can be reached
from any other state [7]. We need that this property holds in Ck, as stated in
the next lemma.

Lemma 2. The Markov chain Ck is irreducible.

Proof. Assume without loss of generality that e1 is the state of E(1), which
consists of a single red point and ensures f(e1) = 0. Let e ∈ E \ {e1} be any
other state, which by definition is the state of E(j) for some j. Then, in Ck the
state e can be reached from e1 with positive probability (Lemma 1).

We prove now that also with positive probability, the state e1 can be reached
from e, which implies that Ck is irreducible. Note that with positive probability,
the point j+1 may be matched with point i(j) in E(j+1). Then, for some point
t ≥ j + 1 we have with positive probability that for ` = j + 1, . . . , t the points
i(`− 1) and ` are matched in E(`), and U(t) = ∅ and Rect(t) = ∅.

Let e′ denote the state of E(t), and we have Prob(Xt+1 = e1 | Xt = e′) = 1.
Hence, the state e1 can be reached from e with positive probability, and Ck is
thus irreducible. ut

Since Ck is irreducible (Lemma 2) and has a finite set of states, it has a
unique stationary distribution s = (s1, s2, . . . , sN ), which is the solution of the
system

s = s · P, s1 + s2 + · · ·+ sN = 1

of linear equations [7]. Furthermore, since f(e) ∈
{

0, 2, 4, . . . , 2dk+1
2 e
}

for all
e ∈ E , the function f is bounded and then the Ergodic theorem ensures

lim
n→∞

Mk(n)

n
= lim

n→∞

1

n

n∑
j=1

f(Xj) =

N∑
i=1

sif(ei),

almost surely [7]. Let αk =
∑N
i=1 sif(ei). We then arrive to the main result of

this paper:

Theorem 1. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a uniform random permu-
tation. Let

Sπ = {(i, π(i)) | i = 1, 2, . . . , n}
be a random point set, where the color (red or blue) of each point of Sπ is selected
randomly and uniformly with probability 1/2. Let k ∈ {1, 2, 3, . . .} be a constant.
For all constant ε > 0 and n large enough, almost surely the number Mk(n) of
points of Sπ that are matched by the algorithm Ãk satisfies Mk(n) ≥ (αk − ε)n.



4 The Markov chain for k = 3

In this section, we consider the algorithm Ã3 and give a precise value for α3. In
Table 2, we describe the states, and the transitions between the states, of the
Markov chain C3. The transition matrix P is in Figure 3.

Since f(e) = 2 for all e ∈ {e2, e6, e9, e10, e16, e17, e18}, f(e11) = 4, f(e) = 0
for all other state e, and the stationary distribution s = (s1, . . . , s18) satisfies

s2 =
167959

816233
, s6 =

69640

816233
, s9 =

6800

816233
, s10 =

58650

816233
,

s11 =
13600

816233
, s16 =

5950

816233
, s17 =

1360

816233
, s18 =

1190

816233
,

we obtain

α3 = 2(s2 + s6 + s9 + s10 + s16 + s17 + s18) + 4s11 =
677498

816233
≈ 0.830030151.

By Theorem 1, taking ε = α3 − 0.83 > 0, for n large enough we have almost
surely that

M(n) ≥M3(n) ≥ 0.83n.

It can be noted in Table 1 that in practice this lower bound is satisfied. Then,
we obtain our second result:

Theorem 2. Let n > 0 be an integer, and let S ⊂ [0, 1]2 be a set of n points,
randomly and uniformly selected. Let R∪B be a random partition (i.e., coloring)
of S in which each point of S is included in R uniformly at random with proba-
bility 1/2. For n large enough, almost surely we have that the maximum number
M(n) of points of S that are covered by a monochromatic strong matching of S
with rectangles satisfies M(n) ≥ 0.83n.

5 Discussion and open problems

Using the theory of Markov chains, by modeling a deterministic greedy matching
algorithm that runs over the random colored n-point set, we have proved that
almost surely at least 0.83n points can be matched with pairwise disjoint axis-
aligned rectangles, that is, M(n) ≥ 0.83n. This lower bound was obtained from
the stationary distribution of a Markov chain for the parameter k = 3. Building
the Markov chain for any k ≥ 4 and computing its stationary distribution will
give, by Theorem 1, higher lower bounds, as the results of Table 1 suggest.
Experimental results suggest that we may be able to prove the bound M(n) ≥
0.97n.

The trivial upper bound for M(n) is M(n) ≤ n. Obtaining tighter lower
and upper bounds for M(n) seems to be more challenging. There are cases in
which we must consider matching strategies more general than that of the greedy
algorithm. Hence, the main open question here is whether limn→∞M(n)/n = 1
or limn→∞M(n)/n < 1.





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1/6 1/6 1/3 1/6 1/6 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1/8 1/8 3/8 1/8 0 1/4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 3/4 1/4 0 0 0 0 0 0 0
6 0 1/4 0 0 0 0 0 0 0 0 0 1/8 1/8 1/4 1/4 0 0 0
7 0 0 0 0 0 0 0 0 0 3/4 1/4 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 3/4 0 0 0 0 0 1/4 0 0
9 0 3/10 0 0 0 0 0 0 0 0 0 1/10 0 1/5 1/5 0 1/5 0
10 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 1/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 1/2 3/10 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
13 0 1/2 3/10 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
14 0 3/10 1/2 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
15 0 1/2 3/10 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
16 0 1/5 0 0 0 0 0 0 0 0 0 1/10 1/10 1/10 3/10 0 0 1/5
17 5/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 5/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Fig. 3: The transition matrix P of the Markov chain for k = 3.
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ei elem. of ei f(ei) neighbors of ei

e1 0 (e2, 1/2), (e3, 1/2)

e2 ∅ 2 (e1, 1)

e3 0 (e4, 1/6), (e5, 1/6), (e6, 1/3), (e7, 1/6), (e8, 1/6)

e4 0 (e4, 1/8), (e5, 1/8), (e6, 3/8), (e7, 1/8), (e9, 1/4)

e5 0 (e10, 3/4), (e11, 1/4)

e6 2 (e2, 1/4), (e12, 1/8), (e13, 1/8), (e14, 1/4), (e15, 1/4)

e7 0 (e10, 3/4), (e11, 1/4)

e8 0 (e10, 3/4), (e16, 1/4)

e9 2 (e2, 3/10), (e12, 1/10), (e14, 1/5), (e15, 1/5), (e17, 1/5)

e10 2 (e2, 1/2), (e3, 1/2)

e11 ∅ 4 (e1, 1)

e12 0 (e2, 1/2), (e3, 3/10), (e6, 1/5)

e13 0 (e2, 1/2), (e3, 3/10), (e6, 1/5)

e14 0 (e2, 3/10), (e3, 1/2), (e6, 1/5)

e15 0 (e2, 1/2), (e3, 3/10), (e6, 1/5)

e16 2
(e2, 1/5), (e12, 1/10), (e13, 1/10),

(e14, 1/10), (e15, 3/10), (e18, 1/5)

e17 2 (e1, 5/6), (e2, 1/6)

e18 2 (e1, 5/6), (e2, 1/6)

Table 2: The table shows the 18 states of the Markov chain for k = 3. In the second
column we show the first component of ei, and in the third column we show the second
component f(ei). In the last column we show the neighbor states of ei as a list of tuples
of the form (ej , Pi,j), where Pi,j = Prob(X`+1 = ej | X` = ei) > 0 is the transition
probability from ei to ej .
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