478 research outputs found

    Everything is Bigger in Texas, Including the Latino Adolescent Pregnancy Rate: How Do We Eliminate the Epidemic of Latino Teen Pregnancy?

    Get PDF
    A commentary on Tortolero et al.\u27s article entitled, Latino Teen Pregnancy in Texas: Prevalence, Prevention, and Policy

    Developing and Optimizing Shrub Parameters Representing Sagebrush (\u3ci\u3eArtemisia\u3c/i\u3e spp.) Ecosystems in the Northern Great Basin Using the Ecosystem Demography (EDv2.2) Model

    Get PDF
    Ecosystem dynamic models are useful for understanding ecosystem characteristics over time and space because of their efficiency over direct field measurements and applicability to broad spatial extents. Their application, however, is challenging due to internal model uncertainties and complexities arising from distinct qualities of the ecosystems being analyzed. The sagebrush-steppe ecosystem in western North America, for example, has substantial spatial and temporal heterogeneity as well as variability due to anthropogenic disturbance, invasive species, climate change, and altered fire regimes, which collectively make modeling dynamic ecosystem processes difficult. Ecosystem Demography (EDv2.2) is a robust ecosystem dynamic model, initially developed for tropical forests, that simulates energy, water, and carbon fluxes at fine scales. Although EDv2.2 has since been tested on different ecosystems via development of different plant functional types (PFT), it still lacks a shrub PFT. In this study, we developed and parameterized a shrub PFT representative of sagebrush (Artemisia spp.) ecosystems in order to initialize and test it within EDv2.2, and to promote future broad-scale analysis of restoration activities, climate change, and fire regimes in the sagebrushsteppe ecosystem. Specifically, we parameterized the sagebrush PFT within EDv2.2 to estimate gross primary production (GPP) using data from two sagebrush study sites in the northern Great Basin. To accomplish this, we employed a three-tier approach. (1) To initially parameterize the sagebrush PFT, we fitted allometric relationships for sagebrush using field-collected data, information from existing sagebrush literature, and parameters from other land models. (2) To determine influential parameters in GPP prediction, we used a sensitivity analysis to identify the five most sensitive parameters. (3) To improve model performance and validate results, we optimized these five parameters using an exhaustive search method to estimate GPP, and compared results with observations from two eddy covariance (EC) sites in the study area. Our modeled results were encouraging, with reasonable fidelity to observed values, although some negative biases (i.e., seasonal underestimates of GPP) were apparent. Our finding on preliminary parameterization of the sagebrush shrub PFT is an important step towards subsequent studies on shrubland ecosystems using EDv2.2 or any other process-based ecosystem model

    Assessing a Multi-Platform Data Fusion Technique in Capturing Spatiotemporal Dynamics of Heterogeneous Dryland Ecosystems in Topographically Complex Terrain

    Get PDF
    Water-limited ecosystems encompass approximately 40% of terrestrial land mass and play a critical role in modulating Earth’s climate and provisioning ecosystem services to humanity. Spaceborne remote sensing is a critical tool for characterizing ecohydrologic patterns and advancing the understanding of the interactions between atmospheric forcings and ecohydrologic responses. Fine to medium scale spatial and temporal resolutions are needed to capture the spatial heterogeneity and the temporally intermittent response of these ecosystems to environmental forcings. Techniques combining complementary remote sensing datasets have been developed, but the heterogeneous nature of these regions present significant challenges. Here we investigate the capacity of one such approach, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm, to map Normalized Difference Vegetation Index (NDVI) at 30 m spatial resolution and at a daily temporal resolution in an experimental watershed in southwest Idaho, USA. The Dry Creek Experimental Watershed captures an ecotone from a sagebrush steppe ecosystem to evergreen needle-leaf forests along an approximately 1000 m elevation gradient. We used STARFM to fuse NDVI retrievals from the MODerate-resolution Imaging Spectroradiometer (MODIS) and Landsat during the course of a growing season (April to September). Specifically we input to STARFM a pair of Landsat NDVI retrievals bracketing a sequence of daily MODIS NDVI retrievals to yield daily estimates of NDVI at resolutions of 30 m. In a suite of data denial experiments we compared these STARFM predictions against corresponding Landsat NDVI retrievals and characterized errors in predicted NDVI. We investigated how errors vary as a function of vegetation functional type and topographic aspect. We find that errors in predicting NDVI were highest during green-up and senescence and lowest during the middle of the growing season. Absolute errors were generally greatest in tree-covered portions of the watershed and lowest in locations characterized by grasses/bare ground. On average, relative errors in predicted average NDVI were greatest in grass/bare ground regions, on south-facing aspects, and at the height of the growing season. We present several ramifications revealed in this study for the use of multi-sensor remote sensing data for the study of spatiotemporal ecohydrologic patterns in dryland ecosystems

    Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach

    Get PDF
    The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM’s sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems

    Changing healthcare professionals' behaviors to eliminate disparities in healthcare: What do we know? How might we proceed?

    Get PDF
    The patient-healthcare provider communication process--particularly the provider's cultural competency--is increasingly recognized as a key to reducing racial/ethnic disparities in health and healthcare utilization. A working group was formed by the Office of Minority Health, Department of Health and Human Services to identify strategies for improving healthcare providers' cultural competency. This expert panel, one of several working groups called together to explore methods of reducing healthcare disparities, was comprised of individuals from academic medical centers and health professional organizations who were nationally recognized as having expertise in healthcare communication as it relates to diverse populations. During the 2-day conference, the panel identified, from personal experience and knowledge of the literature, key points of intervention and interventions most likely to improve the cross-cultural competency of healthcare providers. Proposed interventions included introduction of cultural competence education before, during, and after clinical training; implementation of certification and accreditation requirements in cross-cultural competence for practicing healthcare providers; use of culturally diverse governing boards for clinical practices; and active promotion of workforce cross-cultural diversity by healthcare organization administrators. For each intervention, methods for implementation were specified. On-going monitoring and evaluation of processes of care using race/ethnicity data were recommended to ensure the programs were functioning

    Hot topics, urgent priorities, and ensuring success for racial/ethnic minority young investigators in academic pediatrics.

    Get PDF
    BackgroundThe number of racial/ethnic minority children will exceed the number of white children in the USA by 2018. Although 38% of Americans are minorities, only 12% of pediatricians, 5% of medical-school faculty, and 3% of medical-school professors are minorities. Furthermore, only 5% of all R01 applications for National Institutes of Health grants are from African-American, Latino, and American Indian investigators. Prompted by the persistent lack of diversity in the pediatric and biomedical research workforces, the Academic Pediatric Association Research in Academic Pediatrics Initiative on Diversity (RAPID) was initiated in 2012. RAPID targets applicants who are members of an underrepresented minority group (URM), disabled, or from a socially, culturally, economically, or educationally disadvantaged background. The program, which consists of both a research project and career and leadership development activities, includes an annual career-development and leadership conference which is open to any resident, fellow, or junior faculty member from an URM, disabled, or disadvantaged background who is interested in a career in academic general pediatrics.MethodsAs part of the annual RAPID conference, a Hot Topic Session is held in which the young investigators spend several hours developing a list of hot topics on the most useful faculty and career-development issues. These hot topics are then posed in the form of six "burning questions" to the RAPID National Advisory Committee (comprised of accomplished, nationally recognized senior investigators who are seasoned mentors), the RAPID Director and Co-Director, and the keynote speaker.Results/conclusionsThe six compelling questions posed by the 10 young investigators-along with the responses of the senior conference leadership-provide a unique resource and "survival guide" for ensuring the academic success and optimal career development of young investigators in academic pediatrics from diverse backgrounds. A rich conversation ensued on the topics addressed, consisting of negotiating for protected research time, career trajectories as academic institutions move away from an emphasis on tenure-track positions, how "non-academic" products fit into career development, racism and discrimination in academic medicine and how to address them, coping with isolation as a minority faculty member, and how best to mentor the next generation of academic physicians

    Microbiome analysis as a platform R&D tool for parasitic nematode disease management

    Get PDF
    The relationship between bacterial communities and their host is being extensively investigated for the potential to improve the host’s health. Little is known about the interplay between the microbiota of parasites and the health of the infected host. Using nematode co-infection of lambs as a proof-of-concept model, the aim of this study was to characterise the microbiomes of nematodes and that of their host, enabling identification of candidate nematode-specific microbiota member(s) that could be exploited as drug development tools or for targeted therapy. Deep sequencing techniques were used to elucidate the microbiomes of different life stages of two parasitic nematodes of ruminants, Haemonchus contortus and Teladorsagia circumcincta, as well as that of the co-infected ovine hosts, pre- and post infection. Bioinformatic analyses demonstrated significant differences between the composition of the nematode and ovine microbiomes. The two nematode species also differed significantly. The data indicated a shift in the constitution of the larval nematode microbiome after exposure to the ovine microbiome, and in the ovine intestinal microbial community over time as a result of helminth co-infection. Several bacterial species were identified in nematodes that were absent from their surrounding abomasal environment, the most significant of which included Escherichia coli/Shigella. The ability to purposefully infect nematode species with engineered E. coli was demonstrated in vitro, validating the concept of using this bacterium as a nematode-specific drug development tool and/or drug delivery vehicle. To our knowledge, this is the first description of the concept of exploiting a parasite’s microbiome for drug development and treatment purposes

    "What is the perception of medical students about eLearning during the COVID-19 pandemic? A multicenter study in Peru"

    Get PDF
    "Introduction: As face-to-face medical education was restricted during the pandemic; digital tools have been deployed to continue education showing a good educational impact in most countries. However, the perception of medical students in Peru on eLearning has not yet been investigated. This study assessed the perception of 440 medical students from two national universities in Peru on the characteristics and limitations of eLearning during 2021. Materials and methods: We conducted a cross-sectional study using the self-administered survey Encuesta Virtual en Tiempos de COVID-19 (EVI-CV19) on students between the second and sixth medical year of the Universidad Nacional Mayor de San Marcos (UNMSM) and the Universidad Nacional San Luis Gonzaga (UNSLG, n=325). Results: The majority of students were under 30 years of age (93.9% vs. 97.2%, p=0.084), and female (67% vs. 64%, p=0.107). Of the total, 63.9% and 81.5% UNMSM and UNSLG students considered the virtual platform effective in favouring feedback with recorded lectures (85.2% vs. 85.5%) and the organization of documents (61.7% vs. 80.9%), respectively (p>0.05). Seventy per cent and 46.8% of UNMSM and UNSLG students perceived that teachers were nottrained (p=0.063), and 26.1% and17.2% of students perceived thatthe virtual modality affected their academic performance a lot, respectively (p=0.003). About 38% of students from both universities perceived the virtual platforms as very secure. We found differences between UNMSM and UNSLG students on whether the virtual exams were fair (28.7% vs. 52.3%, p<0.001). Conclusions: This study reported a favorable perception of medical eLearning with clear differences in the limitations of the virtual environment.
    • …
    corecore