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Abstract: Water-limited ecosystems encompass approximately 40% of terrestrial land mass and
play a critical role in modulating Earth’s climate and provisioning ecosystem services to humanity.
Spaceborne remote sensing is a critical tool for characterizing ecohydrologic patterns and advancing
the understanding of the interactions between atmospheric forcings and ecohydrologic responses.
Fine to medium scale spatial and temporal resolutions are needed to capture the spatial heterogeneity
and the temporally intermittent response of these ecosystems to environmental forcings. Techniques
combining complementary remote sensing datasets have been developed, but the heterogeneous
nature of these regions present significant challenges. Here we investigate the capacity of one such
approach, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm, to map
Normalized Difference Vegetation Index (NDVI) at 30 m spatial resolution and at a daily temporal
resolution in an experimental watershed in southwest Idaho, USA. The Dry Creek Experimental
Watershed captures an ecotone from a sagebrush steppe ecosystem to evergreen needle-leaf forests
along an approximately 1000 m elevation gradient. We used STARFM to fuse NDVI retrievals
from the MODerate-resolution Imaging Spectroradiometer (MODIS) and Landsat during the course
of a growing season (April to September). Specifically we input to STARFM a pair of Landsat
NDVI retrievals bracketing a sequence of daily MODIS NDVI retrievals to yield daily estimates of
NDVI at resolutions of 30 m. In a suite of data denial experiments we compared these STARFM
predictions against corresponding Landsat NDVI retrievals and characterized errors in predicted
NDVI. We investigated how errors vary as a function of vegetation functional type and topographic
aspect. We find that errors in predicting NDVI were highest during green-up and senescence
and lowest during the middle of the growing season. Absolute errors were generally greatest in
tree-covered portions of the watershed and lowest in locations characterized by grasses/bare ground.
On average, relative errors in predicted average NDVI were greatest in grass/bare ground regions,
on south-facing aspects, and at the height of the growing season. We present several ramifications
revealed in this study for the use of multi-sensor remote sensing data for the study of spatiotemporal
ecohydrologic patterns in dryland ecosystems.

Keywords: multispectral sensor data fusion; hillslope scale; vegetation; water-limited ecosystems;
aspect; topography; STARFM
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1. Introduction

Water-limited ecosystems cover approximately 40% of Earth’s terrestrial surface and, despite lower
primary productivity than forested systems on a per unit land area basis, exert significant controls
on global water, energy, and biogeochemical cycles (e.g., [1,2]). Some drylands are among the
most biodiverse areas in the world, and dryland biodiversity conservation is critical to sustainable
development and food and water security [3]. Drylands are particularly susceptible to degradation
through disturbances (acting independently or in conjunction) such as fire, invasive species (e.g., [4]),
grazing (e.g., [5,6]), and climate change (e.g., [7]). Spatiotemporal patterns of vegetation in
water-limited ecosystems are complex, and arise as a function of interacting abiotic and biotic processes
that exert influence across a large range of spatial and temporal dimensions. Spatial variability in
terrestrial vegetation at hillslope scales (e.g., 10 s to 100 s of m) in these ecosystems is both influenced
by and can reveal important patterns in surface water, energy, erosion, and biogeochemical cycling
(e.g., [8,9]). Patterns in vegetation can reflect and conform to gradients in abiotic controls like solar
radiation, and topographic convergence, and soil water (e.g., [10,11]). A number of biotic factors can
also influence patterns of terrestrial vegetation at these spatial scales. Herbivory has been shown to
influence the distribution and abundance of vegetation at the relatively fine spatial scales such as
hillslopes [5,12]. At the same time, biomass in water-limited ecosystems (or proxies such as remotely
sensed greenness) can exhibit relatively rapid temporal variability controlled, among other things,
by phenology; disturbances such as fire [13], water stress, and insect infestation [14]; and atmospheric
teleconnections that can produce rare but large precipitation events [15].

The complexity, global significance, and sensitivity of dryland ecosystems motivates a need to
develop improved capacities to monitor variability in terrestrial vegetation in reasonably fine spatial
and temporal detail. The ability to accurately characterize vegetation properties across large regions
of space and decades in time at spatial resolutions approaching hillslopes and temporal resolutions
of weeks or days would provide the ability to understand the relative influence of various abiotic
and biotic drivers of vegetation dynamics in space and time, and significantly enhance the ability to
develop, parameterize, and verify spatial models of dryland ecosystems.

Of particular value to the ecohydrology community is the potential to produce historical
datasets characterizing spatiotemporal variation in vegetation conditions in sufficiently fine detail
to parameterize ecological and hydrologic models. These datasets are of particular interest for
ecohydrologic process investigations because spatiotemporal patterns of vegetation are, in effect,
an integrative and macroscopically observable manifestation of local patterns of water, energy,
and nutrient cycling. Further, these datasets could also be used to condition models of vegetation
dynamics, potentially improving the accuracy of model-predicted water, energy, and nutrient cycling
and uncertainty quantification and propagation. Models with dynamic vegetation components,
particularly those that prognostically simulate aboveground biomass or other complementary elements
of phenology (e.g., [16–19]) require multitemporal vegetation remote sensing datasets in order to
constrain values of model parameters and their uncertainty (e.g., [20,21]). In addition, while the
vegetation remote sensing record has already led to significant advancement of these models, the
ability to obtain reliable spatiotemporal datasets characterizing important attributes of terrestrial
vegetation (i.e., Normalized Difference Vegetation Index, NDVI) at much higher spatial resolutions
could significantly advance: (1) the ability to quantify spatiotemporal patterns at resolutions not
resolved by global land models, (2) the development of parameterizations of sub-pixel resolution
ecological processes within these global land models where needed, and (3) application of similar
dynamic vegetation models at resolutions approaching individual hillslopes (e.g., [22,23]).

Satellites provide global observations of the Earth surface at predictable temporal revisit intervals
and play a critical role in monitoring terrestrial ecosystems. Since the 1970s, for instance, the Landsat
program has provided insight into global vegetation patterns at a 30 m resolution (e.g., [24]).
The MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on NASA’s Terra and Aqua
satellites provide global vegetation products at spatial resolutions of between 250–1000 m [25,26].
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Until the recent launch of Sentinel-2, the configuration of these two platforms demonstrated the
significant tradeoffs for remote sensing of dryland terrestrial ecosystems. Specifically, the higher
resolution Landsat products are associated with a revisit of 16 days at best, while some MODIS
vegetation data products are available at daily intervals. Both platforms suffer from the risk of
clouds contaminating individual images because they rely on the visible and infrared portions of the
electromagnetic spectrum. Recognizing the complementarity of the Landsat and MODIS platforms,
however, previous studies have sought to use data fusion techniques to leverage the high spatial
resolution of Landsat and fine temporal revisit of MODIS (e.g., [27–30]). These data fusion frameworks
are particularly attractive for dryland ecosystems because remote sensing techniques in drylands
rely on phenological changes to elucidate native from non-native vegetation (e.g., [31]). In addition,
the heterogeneity and high soil albedo in drylands can require higher spatial resolution to properly
identify vegetation community types [32]. The Sentinel-2 satellite with global coverage every 5 days
(with two satellites) and multispectral bands similar to Landsat 8 OLI at 10 to 20 m (and three additional
bands at 60 m) also have the potential to fill this data gap in dryland ecosystems.

In this study, we evaluate the ability of one such technique and software package, the Spatial and
Temporal Adaptive Reflectance Fusion Model (STARFM) [27], to accurately capture spatiotemporal
variations in vegetation patterns in a water-limited ecosystem with steep environmental gradients.
The STARFM is a freely-available data-driven algorithm that characterizes spatial patterns of
atmospherically corrected radiance data from sequences of Landsat imagery and then synthesizes
imagery at the resolution of Landsat (i.e., 30 m) by downscaling the MODIS imagery of that same
landscape during the intervening periods of time. Like [33], we opted to use the STARFM algorithm
rather than more complex variations such as the Enhanced STARFM (ESTARFM; [34]), which requires
at least two pairs of training images (fine scale spatial resolution such as Landsat and coarse scale
resolution such as MODIS) [34], or a modified version of ESTARFM referred to as mESTARFM [35]
because testing is limited and some results are inconclusive about the use of ESTARFM in contrasting
landscapes [36]. The usefulness of STARFM in heterogeneous landscapes and semi-arid environments
has been demonstrated in several studies [29,34,37,38]. The [34] study found that ESTARFM improves
the accuracy of predicted reflectance in three reflectance bands for heterogeneous forested landscapes,
while the [29] study randomly sampled vegetation pixels for reflectance and determined that STARFM
was feasible for time series compositing in dryland systems. The [38] study was conducted in a dryland
ecosystem and evaluated the performance of red, NIR and NDVI vegetation pixels stratified by
covertype and focused on comparing results among bands and vegetation type as well as the influence
of image base pair selection and lag time across a growing season on model performance. The [37]
study evaluated the use of STARFM for monitoring forest disturbance and regrowth using multi-date
LiDAR for validation. The present study builds on these previous investigations by evaluating
the influences of vegetation type, timing, topography and snow on STARFM performance with the
integration of LiDAR and in the context of ecohydrologic modeling applications. Specifically, we
focus on the accuracy of 30 m NDVI images synthesized with STARFM in a semiarid watershed
that exhibits significant variation in environmental and physiographic conditions. The work is
designed to address the following research questions: (1) How accurately can 30-m NDVI images
obtained by fusing Landsat and MODIS NDVI retrievals using the STARFM algorithm reproduce
corresponding, withheld, Landsat retrievals? (2) How do errors in STARFM-synthesized NDVI images
vary with: (a) time of year, (b) vegetation functional type as captured by LiDAR canopy height models
(CHM), (c) LiDAR-derived topographic aspect, and (d) presence/absence of snow as captured by the
Normalized Difference Snow Index (NDSI)?

The remainder of the paper is organized as follows: Section 2 overviews the methods, including
a description of the study area, experimental setup, and error metrics. Section 3 details the results of the
analyses in the context of the research questions posed above. Section 4 discusses these results, focusing
on how errors in STARFM predictions could conceivably propagate to ecohydrologic simulations of
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water, energy, and nutrient cycling. Section 5 presents conclusions of the study and highlights new
potential avenues of inquiry identified by this work.

2. Methods

2.1. Study Area

We tested the STARFM model at Dry Creek Experimental Watershed (DCEW), a 27 km2 site in
southwestern Idaho, USA (Figure 1; 43.716◦N, 116.127◦W; elevation: ∼1000–2100 m). The climate is
highly dependent on elevation with mean annual temperature ranging from 10.0 ◦C at lower elevations
to 8.8 ◦C at intermediate elevations, and 6.4 ◦C at upper elevations, while annual precipitation varies
from approximately 370 to 1000 mm. Soils consist of Argixerolls, Haploxerolls, and Haplocambids,
with the upper watershed classified as sandy loam and lower watershed classified as loam [39].
Sagebrush and grass communities dominate the lower elevations, which transitions into ponderosa
pine (Pinus ponderosa) and Douglas fir (Pseudotsuga menziesii) at intermediate and upper elevations.

Figure 1. Location of Dry Creek Experimental Watershed (DCEW) in Idaho, USA. We created
a LiDAR-derived aspect layer (a), and a layer of dominant vegetation functional type (b). DCEW
has a strong vegetation gradient with tree-dominated areas largely contained to the eastern half of
the watershed.

2.2. Remote Sensing Datasets

We selected the 2007 growing season (March–September 2007) because it contained the most
cloud-free consecutive sequence of Landsat scenes as screened on Glovis (http://glovis.usgs.gov/),
and coincided with airborne light detection and ranging (LiDAR) collection for our study area.
The Landsat-5 (L5) Thematic Mapper (TM) scenes were processed to reflectance with LEDAPS [40].
We downloaded corresponding Nadir Bidirectonal Reflectance Distribution Function-Adjusted
Reflectance (NBAR) MODIS daily 16-day composite data (MCD43A4) Version 5 from the USGS Land
Processes Distributed Active Archive Center (LP DAAC) Data Pool. The NBAR MODIS composite

http://glovis.usgs.gov/
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product is generated at a 500-m pixel resolution and combines data from both the Aqua and Terra
satellites. The imagery was delivered in a sinusoidal projection then re-projected to a geographic
coordinate system using the USGS MODIS Reprojection Tool. Individual Landsat and MODIS bands
for red, green, and near-infrared (NIR) were extracted and saved, along with an NDVI composite,
for input into the STARFM model. We also subset images from both products to a common spatial
extent encompassing DCEW and surrounding areas.

Airborne LiDAR was flown 10–18 Nov 2007 (Watershed Sciences, Corvallis, OR, USA) with a
Leica ALS50 Phase II instrument (Leica Geosystems. Inc. Norcross, GA, USA; 1064 nm wavelength) in
a Cessna Caravan 208B aircraft flown approximately 900 m above ground level resulting in an average
point density of 4.09 to 8.68 points m−2. We classified the LiDAR points as vegetation or ground with
the BCAL LiDAR Tools [41] to produce a canopy height model (CHM) and bare earth digital elevation
model (DEM) at 5-m pixel resolution.

2.3. STARFM Algorithm

The STARFM algorithm was developed to quantify changes, sometimes rapid, in vegetation
phenology during the growing season [27]. An exhaustive review of the STARFM algorithm is beyond
the scope of this paper, and the reader is referred to [27] for a more thorough description of the
algorithm, its assumptions and limitations, as well as other details. Here we describe relevant features
of STARFM and how they were applied in this study. The STARFM algorithm uses one or more
fine spatial resolution images (e.g., Landsat) paired with high frequency temporal resolution images
(e.g., MODIS) to predict daily surface reflectance at the fine spatial resolution (e.g, 30 m) for dates where
no Landsat images were acquired. The model assumes aggregation from finer scale homogeneous
pixels into coarser heterogeneous pixels and is therefore sensitive to landscape patch size and degrades
when applied to landscapes with fine scale heterogeneity. STARFM synthesizes a Landsat image using
a temporally coincident pair of Landsat and MODIS images, and an additional MODIS image on the
prediction date. The user has an option of including more matched pairs (k) to further constrain the
prediction. For example, the weighting of surrounding pixels can be variable and dependent on cloud
cover. The STARFM algorithm includes information from similar neighboring pixels (i.e., pixels of the
same spectral class), giving the equation for the central pixel:

L
(

xw/2, yw/2, t0
)
=

w

∑
i=1

w

∑
j=1

n

∑
k=1

Wijk ·
(

M
(
xi, yj, t0

)
+ L

(
xi, yj, tk

)
− M

(
xi, yj, tk

))
(1)

where L is the surface reflectance of a Landsat image, a pixel location is denoted (xi, yj), w is the
moving window size, (xw/2, yw/2) is the central pixel of the moving window, prediction date is t0,
acquisition date is tk, and Wi,j,k is a weight function. None of the algorithm parameters, such as w were
adjusted. We tested synthetic images created with a single coincident pair of Landsat and MODIS
images (k = 1), and synthetic images created with two pairs of coincident Landsat and MODIS images
(k = 2). All predicted dates for the synthetic images had a matching Landsat image collected within
one to four days to assess prediction error.

2.4. Error Analysis

We assessed model accuracy with a pixel-based differencing of the Landsat images synthesized
by STARFM and the withheld observation of NDVI and reflectance in the individual green, red,
and near-infrared bands. Linear regression analysis was performed for all pixels in the image to
determine bias (slope and intercept) and overall prediction accuracy (r2). We calculated mean absolute
error (MAE), mean signed error (MSE), standard deviation of the error, and root mean square error
(RMSE). Finally, we provided the Nash-Sutcliffe Efficiency index (NSE) as an alternative to traditional
regression-based analyses by comparing the prediction error with a mean value [42]. The NSE,
which is most commonly used to assess the performance of hydrologic models (e.g., [43,44]), varies
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from −∞ to 1, where a value of 0 indicates no improvement over the mean, negative values signify
degraded prediction with respect to the mean, and 1 is a perfect match to observed data.

NSE = 1 − ∑
(
ŷi − yi

)2

∑
(
yi − ȳ

)2 (2)

where ŷi is the simulated value, yi is the observed value, and ȳ is the mean value across the
observed scene.

In order to better determine the effectiveness of STARFM relative to seasonal changes,
we compared the synthesized Landsat images with the two temporally closest cloud-free Landsat
images. Our rationale for this comparison is that the basis for determining the value added by using
the STARFM algorithm should be the extent to which the synthesized Landsat image offers a significant
improvement over the temporally nearest cloud-free Landsat image (which we term a “null” model).
This comparison is particularly important in water-limited ecosystems where vegetation response
can be rapid in time and highly heterogeneous in space. For example, low errors in the null model
indicate little change is occurring, while high errors indicate larger phenological changes. These errors
provide context for the STARFM predictions in these water-limited environment. For example, cases in
which the STARFM prediction has low error and the null model has high error demonstrates a greater
gain of information. When the null model has low error and the STARFM prediction also has low
error, there is little temporal change in vegetation for STARFM to predict and the low errors can be
attributed to a lack of significant vegetation change between the two time intervals of interest. Finally,
circumstances in which the STARFM prediction might indicate large errors while the null model
is associated with low error might suggest the STARFM algorithm is actually producing spurious
patterns of vegetation change.

As an effort to account for an additional confounding error, we calculated the normalized
difference snow index (NDSI) to determine if errors early and late in the growing season could
be attributed to snowmelt or accumulation between dates.

NDSI =
ρgreen − ρSWIR

ρgreen + ρSWIR
, (3)

where ρgreen and ρSWIR are the reflectances in the green and shortwave infrared wavelengths,
respectively. NDSI was calculated with the observed Landsat image and used to identify areas
with snow (NDSI ≥ 0.4; [45]) and without snow (NDSI < 0.4). The RMSE for STARFM predictions in
snow-covered areas was compared with non-snow areas to determine if errors were larger.

We also investigated the extent to which errors in STARFM predictions are sensitive to the
dominant vegetation type in each Landsat pixel. We accomplished this by using the extant LiDAR
dataset to classify vegetation into dominant functional types and quantifying errors within each type.
Specifically, we investigated the absolute and relative magnitude of STARFM prediction errors within
three dominant vegetation classes obtained by screening the LiDAR-derived CHM mentioned above.
The dominant vegetation class within each Landsat pixel is classified as “tree” when the average CHM
height within that pixel is greater than 2 m, “shrub” when average CHM height is between 0.3 m and
2.0 m, and “grasses” when average CHM height is less than 0.3 m.

In DCEW, topographic aspect is a strong predictor of presence/absence of different plant
functional types at the same elevation and the distribution of these functional types can vary with
correlation lengths that are larger than those resolved by Landsat but beneath that resolved by
MODIS [46–48]. Similar studies in water-limited ecosystems have also found similar aspect-dependent
distributions of vegetation type [49–52]. For that reason, there is some reason to suspect that errors in
STARFM-derived images might be correlated with topographic aspect both in the study area and more
broadly in the water-limited ecosystems being studied. We, therefore, used a LiDAR-derived DEM to
calculate the local topographic aspect in all eight cardinal directions, North, Northeast, East, Southeast,
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South, Southwest, West, and Northwest. We investigated both the absolute and relative RMSE and
MSE for each aspect class, as well.

3. Results

3.1. STARFM Algorithm Performance

The majority of green-up for tree and shrub pixels occurs in April and May (27 April 2007–29
May 2007), where mean NDVI values in the observed Landsat scenes increase from 0.33 to 0.51 for
tree pixels and from 0.24 to 0.37 for shrub pixels (Table 1). Peak NDVI values are maintained until
approximately early August, then decline into September (0.41 for trees and 0.25 for shrubs). Pixels
with vegetation less than 0.3 m tall, most likely dominated by grasses, contained observed mean
NDVI values comparable to shrub pixels early in the growing season (0.24 in April), with maximum
production in May (0.27), followed by a steady decline to 0.10 in September.

Table 1. Mean actual Landsat-5 Normalized Difference Vegetation Index (NDVI) for each date
and vegetation type in Dry Creek Experimental Watershed (DCEW), Idaho, USA. This was used
to normalize/standardize the vegetation type and aspect figures.

Date Trees Shrubs Grasses

27 April 2007 0.3317 0.2380 0.2406
13 May 2007 0.4281 0.3374 0.2654
29 May 2007 0.5068 0.3728 0.2436
14 June 2007 0.4734 0.3417 0.1983
30 June 2007 0.5255 0.3567 0.1780

1 August 2007 0.4367 0.2714 0.1090
17 August 2007 0.4141 0.2514 0.1009

2 September 2007 0.4110 0.2419 0.0984

Inputting two pairs of training data (Table 2, Figure 2), one pair before the predicted date and
one pair after, into STARFM resulted in a more accurate synthetic NDVI image than using only one
pair of training data (Table 3). In both the one-pair and two-pair cases, early spring had the highest
model errors, particularly the 27 April 2007 image. Despite poorer results early in the growing season,
all synthetic images in the two-pair model contained new information (NSE > 0) and images beginning
in late May through the end of the growing season explained over 94% of the variation in NDVI values
(Table 2). However, the one-pair model underperformed early in the growing season compared to the
two-pair model, with the April synthetic image not adding additional information with an NSE of
−1.06, an r2 of 0.20, and a slope of 0.44 (Table 3). Further, both synthetic images in May (5 May 2007
and 29 May 2007) from the one-pair model performed worse than the two-pair model in all error and
correlation metrics (Tables 2 and 3). Both sets of models stabilize in the middle and late growing season
and show only marginal differences in error metrics (Tables 2 and 3), suggesting that the amount of
training data is less important when little phenological change is occurring.

The null model that used the temporally nearest cloud-free Landsat image, rather than a synthetic
STARFM-predicted image, performed even poorer in the early growing season (April and May),
but stabilized to provide similar results in summer and slightly better results in September (Table 4).
The negative NSE values for the first two dates (Table 4) shows a high level of phenological change
that is at least partially modeled with STARFM (Table 2).
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Table 2. Error and correlation statistics for full scene difference of observed and predicted Normalized
Difference Vegetation Index (NDVI) values. The STARFM-predicted synthetic image was created using
two pairs of training data.

Date Data Set MAE MSE RMSE Error SD NSE Intercept Slope r2

27 April 2007 NDVI 0.060 −0.023 0.077 0.073 0.197 0.094 0.561 0.369
13 May 2007 NDVI 0.029 0.008 0.041 0.040 0.810 0.018 0.971 0.838
29 May 2007 NDVI 0.036 −0.032 0.044 0.030 0.909 0.023 0.851 0.973
14 June 2007 NDVI 0.040 0.039 0.048 0.029 0.899 −0.002 1.124 0.984
30 June 2007 NDVI 0.036 −0.033 0.045 0.031 0.943 0.005 0.894 0.981

1 August 2007 NDVI 0.021 0.009 0.029 0.028 0.971 0.012 0.991 0.974
17 August 2007 NDVI 0.031 0.017 0.043 0.040 0.931 0.024 0.973 0.943

2 September 2007 NDVI 0.022 −0.007 0.030 0.029 0.966 0.001 0.969 0.968

MAE = mean absolute error; MSE = mean signed error; RMSE = root mean squared error; NSE = Nash-Sutcliffe
efficiency index; r2 = coefficient of determination.

Figure 2. Landsat NDVI retrievals (NDVIL) (a,d,g), STARFM-predicted synthetic NDVI (NDVIS)
(b,e,h), and the differenced errors (NDVIL −NDVIS) (c,f,i) for three dates throughout the 2007 growing
season. Images cover the full extent of Dry Creek Experimental Watershed (DCEW), Idaho, USA.

Table 3. Error and correlation statistics for full scene difference of observed and predicted Normalized
Difference Vegetation Index (NDVI) values. The STARFM-predicted synthetic image was created using
one pair of training data.

Date Data Set MAE MSE RMSE Error SD NSE Intercept Slope r2

27 April 2007 NDVI 0.095 −0.085 0.123 0.089 −1.063 0.066 0.435 0.199
13 May 2007 NDVI 0.043 −0.015 0.060 0.058 0.604 0.018 0.901 0.693
29 May 2007 NDVI 0.037 −0.016 0.048 0.045 0.892 0.064 0.784 0.927
14 June 2007 NDVI 0.043 0.042 0.050 0.027 0.894 0.014 1.083 0.979
30 June 2007 NDVI 0.039 −0.033 0.050 0.037 0.929 0.021 0.846 0.979

1 August 2007 NDVI 0.041 0.037 0.052 0.036 0.912 0.023 1.053 0.966
17 August 2007 NDVI 0.018 0.002 0.024 0.024 0.979 0.003 0.995 0.979

2 September 2007 NDVI 0.019 −0.006 0.025 0.025 0.975 0.001 0.973 0.977
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Table 4. Error and correlation statistics for full scene difference of Normalized Difference Vegetation
Index (NDVI) values for observed and preceding Landsat scenes (i.e., the “null” model). Higher error
indicates larger phenological changes between the given dates and serves as a baseline for determining
model prediction accuracy in Tables 2 and 3.

Date Previous Data- MAE MSE RMSE Error NSE Inter- Slope r2
Date Set SD cept

27 April 2007 26 March 2007 NDVI 0.142 −0.142 0.152 0.056 −2.180 −0.012 0.515 0.586
13 May 2007 27 April 2007 NDVI 0.077 −0.069 0.103 0.077 −0.189 0.073 0.578 0.410
29 May 2007 13 May 2007 NDVI 0.060 −0.035 0.076 0.067 0.731 0.111 0.605 0.870
14 June 2007 29 May 2007 NDVI 0.042 0.038 0.047 0.027 0.905 0.057 0.942 0.968
30 June 2007 14 June 2007 NDVI 0.038 −0.019 0.048 0.044 0.936 0.050 0.804 0.976

1 August 2007 30 June 2007 NDVI 0.077 0.077 0.086 0.037 0.756 0.061 1.059 0.963
17 August 2007 1 August 2007 NDVI 0.023 0.017 0.030 0.025 0.966 0.004 1.051 0.982

2 September 2007 17 August 2007 NDVI 0.017 0.005 0.023 0.022 0.980 0.003 1.006 0.982

3.2. Sources of Error

Aside from bias due to differences between Landsat and MODIS processing techniques,
bandwidth, acquisition time and geolocational errors, differences in prediction error were observed
across bands and also varied by vegetation type. The near-infrared (NIR) band was predicted with
less accuracy than the green and red bands except for 27 April 2007 where NIR was best (Table 5).
On all dates for all bands, NSE was positive indicating added information from the model. While all
three bands were not predicted well on 27 April 2007, it is clear that most of the error for NDVI on
13 May 2007 is due to the high error in NIR (r2 = 0.65; RMSE = 226; NSE = 0.57) and not from the
red band (r2 = 0.96; RMSE = 97; NSE = 0.93). A similar pattern emerges throughout the rest of the
growing season 29 May 2007–2 September 2007 with all error metrics being lower for the red band
(NSE = 0.91–0.98; r2 = 0.98–0.99) compared to the NIR band (NSE = 0.79–0.88; r2 = 0.86–0.93) (Table 5).

Table 5. Error and correlation statistics for full scene difference of observed and predicted green, red,
and near-infrared (NIR) reflectance values. The STARFM-predicted synthetic image was created using
two pairs of training data.

Date Data Set MAE MSE RMSE Error SD NSE Intercept Slope r2

27 April 2007
Green 229.172 148.714 333.796 298.840 0.053 99.360 0.358 0.270
Red 232.321 122.325 377.638 357.280 0.329 87.230 0.474 0.410
NIR 227.374 101.759 339.601 323.999 0.405 126.700 0.517 0.464

13 May 2007
Green 63.016 −53.908 77.160 55.205 0.875 −16.910 1.083 0.954
Red 76.917 −58.629 96.561 76.725 0.929 −14.560 1.060 0.964
NIR 157.154 −85.866 225.754 208.788 0.570 65.180 0.744 0.647

29 May 2007
Green 68.304 54.570 82.069 61.299 0.892 30.580 0.817 0.961
Red 87.665 56.253 106.767 90.747 0.947 27.110 0.854 0.977
NIR 128.410 −94.798 168.274 139.031 0.822 62.970 0.769 0.897

14 June 2007
Green 104.656 −102.948 119.241 60.168 0.782 −23.220 1.086 0.961
Red 117.969 −107.972 141.261 91.087 0.907 −27.540 1.104 0.978
NIR 107.866 42.687 139.203 132.498 0.878 −37.650 1.133 0.932

30 June 2007
Green 71.448 60.893 85.524 60.054 0.932 22.670 0.885 0.975
Red 91.783 63.634 111.525 91.589 0.964 22.670 0.897 0.983
NIR 133.999 −92.914 176.863 150.493 0.867 57.930 0.790 0.923

1 August 2007
Green 71.702 −69.025 83.267 46.572 0.939 −6.799 0.999 0.981
Red 83.710 −77.200 101.627 66.093 0.971 −47.127 0.982 0.988
NIR 125.724 −91.562 159.062 130.067 0.842 35.800 0.841 0.898

17 August 2007
Green 44.814 −14.633 58.288 56.421 0.971 1.951 0.976 0.973
Red 72.434 −55.137 91.863 73.476 0.976 −4.255 0.992 0.985
NIR 119.299 −13.138 152.453 151.887 0.854 52.380 0.796 0.859

2 September 2007
Green 106.265 86.322 121.152 85.008 0.871 16.870 0.935 0.936
Red 109.260 97.836 128.196 82.839 0.951 11.960 0.986 0.980
NIR 164.839 131.660 197.753 147.554 0.785 44.210 0.871 0.880
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Prediction error in the synthetic images was largely segregated by vegetation type. Tree pixels
showed higher error on all dates, followed by shrub pixels, while ground or grass-dominated pixels had
the lowest RMSE (Figure 3). After accounting for the mean NDVI for the given vegetation functional
type on the given date, RMSE/µNDVI is higher for shrub pixels in the early growing season (Figure 4;
27 April 2007, 13 May 2007), but transitions to being much higher in grass pixels later in the growing
season (Figure 4; 30 June 2007–2 September 2007). Further analysis of sensitivity to both vegetation
and aspect indicated that prediction error is likely higher on south-facing slopes (Figures 5–8; 13 May
2007, 1 August 2007, 17 August 2007). However, prediction error was not influenced by aspect on
some dates (Figure 5; 27 April 2007, 29 May 2007, 30 June 2007), suggesting that these errors may be
due to a seasonal or phenological effect. We found snow to be a significant cause of error in the first
early spring synthetic image with snow-covered pixels having a mean RMSE of 0.146, while snow
free pixels had mean RMSE of 0.075. Snow did not appear to be a source of error in the final synthetic
image (2 September 2007), with snow-covered pixels having mean RMSE of 0.029 and snow free pixels
having mean RMSE of 0.0301.

Figure 3. Root mean square error (RMSE) (a) and mean signed error (MSE), (b) separated by dominant
vegetation functional type over the 2007 growing season at Dry Creek Experimental Watershed (DCEW),
Idaho, USA.
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Figure 4. Normalized root mean square error (RMSE/µNDVI) (a) and normalized mean signed error
(MSE/µNDVI), (b) separated by dominant vegetation functional type over the 2007 growing season
at Dry Creek Experimental Watershed (DCEW), Idaho, USA. Errors were normalized by dividing
RMSE and MSE by the mean normalized difference vegetation index (NDVI) for the given vegetation
functional type on the given date (see Table 1).

Figure 5. Root mean square error (RMSE) separated by dominant vegetation functional type and
aspect over the 2007 growing season at Dry Creek Experimental Watershed (DCEW), Idaho, USA for
(a) 27 April 2007, (b) 13 May 2007, (c) 29 May 2007, (d) 14 June 2007, (e) 30 June 2007, (f) 1 August 2007,
(g) 17 August 2007, and (h) 2 September 2007.
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Figure 6. Normalized root mean square error (RMSE/µNDVI) separated by dominant vegetation
functional type and aspect over the 2007 growing season at Dry Creek Experimental Watershed (DCEW),
Idaho, USA for (a) 27 April 2007, (b) 13 May 2007, (c) 29 May 2007, (d) 14 June 2007, (e) 30 June 2007,
(f) 1 August 2007, (g) 17 August 2007, and (h) 2 September 2007. Errors were normalized by dividing
RMSE by the mean normalized difference vegetation index (NDVI) for the given vegetation functional
type on the given date (see Table 1).

Figure 7. Mean signed error (MSE) separated by dominant vegetation functional type and aspect
over the 2007 growing season at Dry Creek Experimental Watershed (DCEW), Idaho, USA for
(a) 27 April 2007, (b) 13 May 2007, (c) 29 May 2007, (d) 14 June 2007, (e) 30 June 2007, (f) 1 August 2007,
(g) 17 August 2007, and (h) 2 September 2007.
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Figure 8. Normalized mean signed error (MSE/µNDVI) separated by dominant vegetation functional
type and aspect over the 2007 growing season at Dry Creek Experimental Watershed (DCEW), Idaho,
USA for (a) 27 April 2007, (b) 13 May 2007, (c) 29 May 2007, (d) 14 June 2007, (e) 30 June 2007,
(f) 1 August 2007, (g) 17 August 2007, and (h) 2 September 2007. Errors were normalized by dividing
MSE by the mean normalized difference vegetation index (NDVI) for the given vegetation functional
type on the given date (see Table 1).

4. Discussion

Comparisons between STARFM predictions of NDVI using two pairs of training data (Table 2,
Figure 9) and the null model (Table 4) suggest the Landsat-MODIS data fusions led to information
gain for the five scenes from 13 May 2007 to 1 August 2007, where errors from STARFM predictions
were lower than the corresponding errors in the null model. This is particularly evident in the May
scene, where the null model was associated with an r2 equal to 0.410 and the STARFM predictions
were associated with an r2 equal to 0.838. In this case STARFM is seemingly able to accurately
apportion changes in NDVI captured by MODIS in space during a period characterized by rapid
changes in phenology during spring green-up. By contrast, prediction differences in the null model
were lower than corresponding differences obtained via the STARFM algorithm for the 27 April 2007,
17 August 2007, and 2 September 2007 scenes. Differences between the null model and the STARFM
algorithm were large in April (r2 of 0.586 and 0.369, respectively), and minor in August (r2 of 0.982 and
0.943, respectively) and September (r2 of 0.982 and 0.968, respectively). The large discrepancy in the
April scene can be partially attributed to snow covered pixels, which is consistent with similar studies
(e.g., [53]). When taking the NSE error metric into consideration, all synthetic images in the two-pair
model contained new information NSE > 0, which is consistent with studies that found STARFM
can capture phenological timing more precisely, even in areas where there are patterns of relatively
fine-grained spatial heterogeneity [38]. It is possible that application of the STARFM algorithm to
DCEW (and water-limited, heterogeneous regions more generally) could be improved, especially
in the “shoulder months” of the growing season, by using a MODIS product with higher temporal
resolution than the 16-day NBAR composite. A study by [29] tested differences in MODIS daily surface
reflectance, 8-day composite and 16-day NBAR on STARFM performance in drylands and found that
the 16-day NBAR was the optimal imagery for fusion with Landsat-5 TM; however, study observations
highlighted the inherent temporal constraints of composite datasets (i.e., 8-day composite of 16-day
NBAR) during times of rapid phenological change, such as green-up or senescence.
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Figure 9. Regression graphs for actual (Landsat) normalized difference vegetation index (NDVI) and
STARFM-predicted NDVI over the 2007 growing season at Dry Creek Experimental Watershed (DCEW),
Idaho, USA or (a) 27 April 2007, (b) 13 May 2007, (c) 29 May 2007, (d) 14 June 2007, (e) 30 June 2007,
(f) 1 August 2007, (g) 17 August 2007, and (h) 2 September 2007.

With the exception of the April scene, STARFM prediction error was consistently greatest in
the NIR band compared to red and green bands. To date, several studies have compared STARFM
performance as it relates to differences between predicted and observed values in the NIR and visible
bands, with mixed results [29,34,38,53,54]. Studies by [53,54] found that errors in STARFM-derived
predictions in the NIR may be attributable to atmospheric contamination at shorter wavelengths,
which has been reported to affect the prediction accuracy for other fusion techniques [28]. In the
study by [28] the intercept of the relationship between observed and predicted images was positive
in all cases, which can be interpreted as a noise signal likely due to atmospheric and BRDF effects.
Prediction differences in the study by [54] could also be related to atmospheric influence, as the Landsat
images were corrected to top of atmosphere reflectance not apparent reflectance [29]. Similar to our
study, both [29] and [38], which were conducted in dryland systems, found lower correlations in the
NIR. Reference [38] findings differed from previous studies that attributed better NIR [28,53] and
shortwave infrared [55] predictions to greater influence of atmospheric contamination on shorter
wavelengths. Importantly, that study was set in semi-arid dryland forests and yielded similar results
to [29]. Reference [38] recommend that all synthetic reflectance products be evaluated prior to use as
the influence of site specific conditions might be variable across the visible and NIR portions of the
spectrum. Using a modified version of the STARFM algorithm, reference [34] found that the ESTARFM
algorithm performed slightly better than STARFM in a region of relatively homogeneous vegetation,
but significantly better in a region of heterogeneous vegetation.

The above discussion reveals the difficulty in comparing across studies using STARFM due to
the complexities in the region being studied, the data sets being fused, and the details of the satellite
platforms from which those data are collected. In our study domain, absolute errors in STARFM
predictions of NDVI tended to be largest in the tree cover type, followed by shrubs, and then grasses.
At the same time, however, this conclusion does not hold in its entirety when considering the prediction
errors scaled to average NDVI (µNDVI). The relative error (RMSE in NDVI scaled by µNDVI) tends
to be largest in the grass cover type, and this impact is greatest in mid-August, when RMSE in the
grass regions is approximately 40% of the average NDVI. This suggests that a degree of caution
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be exercised in applying STARFM, and potentially other data fusion algorithms, in savanna-like
ecosystems with significant grass coverage. This result suggests that particular attention is warranted
in grass-dominated regions within heterogeneous ecosystems where errors in STARFM-predicted
NDVI may be small relative to other regions within a study area in an absolute sense, but significant
relative to the average NDVI of the grass-dominated region.

Correspondingly, there do not appear to be significant, generalizable conclusions about the
role of topographic aspect in STARFM-derived predictions of NDVI across all vegetation functional
types and time periods. Related to the above discussion of the magnitude of higher relative error
in grass-dominated regions, this effect is particularly pronounced in south- and southeast-facing
hillslopes in DCEW. We caution against over-interpreting this conclusion, however, because south-
and southeast-facing slopes found in the middle elevations of DCEW tend to be dominated by grasses.
Hence, the observed trend in Figure 5 seems to largely echo the previously discussed conclusions
about the role of vegetation functional type as a predictor of STARFM performance. Interestingly,
though, when we look at the magnitude of the relative error in NDVI in grass-covered regions we find
that south- and southeast-facing pixels demonstrate an increase in relative error in the 1 August 2007
prediction. Relative error in NDVI in grass-dominated regions is again larger in the 17 August 2007
prediction on south- and southeast-facing pixels, but there is also an increase in relative error in east-
and southwest-facing pixels relative to the previous 1 August 2007 prediction. By the 2 September
2007 prediction, relative error has decreased on east-, southeast-, south-, and southwest-facing pixels,
but risen significantly on north-facing pixels in grass-dominated regions. Thus, topographic aspect
may not play as large an influence as vegetation type in defining the magnitude of STARFM prediction
errors in water-limited ecosystems, but it may impact the timing of errors when STARFM is being used
to synthesize a time series of images.

Results from this study have important implications for the use of STARFM and other data fusion
algorithms for creating value-added spatiotemporal vegetation remote sensing datasets that may be
used to inform land models. These implications are related to the previous points we have discussed
above. Specifically, results suggest that STARFM and other data fusion algorithms can serve to
compensate for the tradeoffs between spatial and temporal resolution common to many remote sensing
platforms used to characterize terrestrial vegetation, even in water-limited ecosystems with significant
spatial heterogeneity in vegetation functional types. This suggests that it is possible to create historical
reconstructions of spatiotemporal variation in variables like NDVI, which provide an important
window into local dynamics of water, energy, and biogeochemical cycling, with reasonable confidence,
over extended periods of time, and in relatively high spatial and temporal detail. When STARFM,
specifically, can be applied in a way that makes use of Landsat images bracketing the dates of interest,
it is possible to create accurate imputations of NDVI and other variables at the spatial resolution of
Landsat and temporal resolution of MODIS. Historical reconstructions with these characteristics would
be of significant value for constraining key land model parameters related to the vegetation canopy
(e.g., LAI, albedo, etc.). Hence, data fusion algorithms like STARFM may have an important role to play
in development, application, calibration, and verification of land models in water-limited ecosystems.

Along with previous studies, this work highlights the importance of continuity in remote sensing
datasets with complementary characteristics. Algorithms like STARFM are useful only because of the
simultaneous existence and availability of Landsat and MODIS data. STARFM and algorithms like it
are sufficiently generic that other complementary pairs of remote sensing platforms could be used to
develop historical reconstructions of spatiotemporal vegetation characteristics. While some studies
have already begun to explore application of STARFM and other data fusion algorithms to constrain
other satellite datasets to each other, additional work on this topic is warranted (e.g., [2,56–59]). Landsat
and the Advanced High-Resolution Radiometer (AVHRR) have an even longer period of operational
overlap. In addition, although AVHRR is associated with a much coarser resolution than MODIS, it
may be worthwhile to explore the performance of AVHRR-Landsat data fusion through STARFM in a
variety of ecosystems of interest. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a potential
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asset with observational characteristics similar to MODIS and complementary to Landsat. With the
potential to derive fine spatial and temporal scales, data fusion of Landsat and Sentinel-2 could provide
significant advances in monitoring the phenophases of dryland ecosystems.

5. Conclusions

In this study, we investigated (1) how accurately the STARFM algorithm can be used to synthesize
reflectance measurements from MODIS and Landsat within a semi-arid watershed with complex
spatial heterogeneity. (2) We evaluated how STARFM prediction error varied with (a) the rate of
phenological change in a growing season, (b) vegetation functional type (c) topographic aspect, and (d)
the presence of seasonal snowpacks. Specifically, STARFM was used to synthesize images of NDVI
as well as reflectance in the green, red, and NIR bands using MODIS NBAR and Landsat images
bracketing the dates when we applied the STARFM algorithm. We repeated this application of STARFM
for eight dates during the 2007 growing season 27 April 2007–2 September 2007. We found that the
images synthesized using STARFM yielded accurate predictions of NDVI, when compared with a null
model consisting of the temporally nearest Landsat observation, for five of the eight dates. Two of the
remaining dates were associated with negligible differences in accuracy between the STARFM and null
model predictions of NDVI, while the null model exhibited superior performance on the remaining
date (27 April 2007). The presence/absence of snow was a significant factor on the performance of
STARFM on that date. Absolute errors in STARFM-derived predictions of NDVI are highest in regions
covered by trees, while relative errors are highest in grass-dominated regions of the study watershed.
Topographic aspect was not a strong predictor of absolute errors across all vegetation types, although
errors in grass-dominated regions on south- and southeast-facing slopes tended to be highest in the
late-growing season. This study suggests that data fusion algorithms like STARFM can, when carefully
used, be applied to create historical reconstruction of the spatiotemporal dynamics of key vegetation
characteristics like NDVI in even highly heterogeneous shrub-dominated systems. Future applications
of STARFM in DCEW using Landsat and MODIS satellite pairs consider refining results by using
MODIS daily reflectance products during periods of rapid greenup rather than the 16-day composite
products that were evaluated in this investigation. This study uniquely demonstrates that availability
of LiDAR datasets in a study region can be used to examine how errors in the STARFM downscaling
algorithm vary by dominant vegetation type. Because the spatiotemporal patterns of NDVI provide
a reflection of the associated patterns in water, energy, and biogeochemical cycling, the ability to
develop similar reconstructions is important from the perspective of ecohydrologic process study
and modeling.
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