35 research outputs found

    Pain Sensitivity Risk Factors for Chronic TMD: Descriptive Data and Empirically Identified Domains from the OPPERA Case Control Study

    Get PDF
    Many studies report that people with temporomandibular disorders (TMD) are more sensitive to experimental pain stimuli than TMD-free controls. Such differences in sensitivity are observed in remote body sites as well as in the orofacial region, suggesting a generalized upregulation of nociceptive processing in TMD cases. This large case-control study of 185 adults with TMD and 1,633 TMD-free controls measured sensitivity to painful pressure, mechanical cutaneous, and heat stimuli, using multiple testing protocols. Based on an unprecedented 36 experimental pain measures, 28 showed statistically significantly greater pain sensitivity in TMD cases than controls. The largest effects were seen for pressure pain thresholds at multiple body sites and cutaneous mechanical pain threshold. The other mechanical cutaneous pain measures and many of the heat pain measures showed significant differences, but with lesser effect sizes. Principal component analysis (PCA) of the pain measures derived from 1,633 controls identified five components labeled: (1) heat pain ratings, (2) heat pain aftersensations and tolerance, (3) mechanical cutaneous pain sensitivity, (4) pressure pain thresholds, and (5) heat pain temporal summation. These results demonstrate that, compared to TMD-free controls, chronic TMD cases are more sensitive to many experimental noxious stimuli at extra-cranial body sites, and provides for the first time the ability to directly compare the case-control effect sizes of a wide range of pain sensitivity measures

    Potential Autonomic Risk Factors for Chronic TMD: Descriptive Data and Empirically Identified Domains from the OPPERA Case-Control Study

    Get PDF
    Several case-control studies have been conducted that examine the association between autonomic variables and persistent pain conditions; however, there is a surprising dearth of published studies in this area that have focused on temporomandibular disorders (TMD). The current study presents autonomic findings from the baseline case-control study of the OPPERA (Orofacial Pain: Prospective Evaluation and Risk Assessment) cooperative agreement. Measures of arterial blood pressure, heart rate, heart rate variability, and indirect measures of baroreflex sensitivity were assessed at rest and in response to a physical (orthostatic) and psychological (Stroop) stressors in 1633 TMD-free controls and 185 TMD cases. In bivariate and demographically adjusted analyses, greater odds of TMD case status were associated with elevated heart rates, reduced heart rate variability, and reduced surrogate measures of baroreflex sensitivity across all experimental procedures. Principal component analysis was undertaken to identify latent constructs revealing five components. These findings provide evidence of associations between autonomic factors and TMD. Future prospective analyses in the OPPERA cohort will determine if the presence of these autonomic factors predicts increased risk for developing new onset TMD

    Association Between Gynecological Characteristics and Temporomandibular Disorders: Insights from the OPPERA Study

    Get PDF
    • Several chronic pain conditions, such as temporomandibular disorders (TMD), are more common in women than in men although the biological mechanisms responsible for this gender disparity are poorly understood • Observational studies suggest that TMD pain is greatest during the late luteal phase of the menstrual cycle and during menses when estrogen levels quickly decline • Also, women with TMD who use hormonal contraception report greater levels of daily pain compared to women not taking hormonal contraception • The aim of this study is to evaluate gynecological characteristics that are putative risk factors for TMD: parity, use of hormonal contraception, and self-reported pain levels and psychological symptoms over the course of the menstrual cycl

    Clinical Findings and Pain Symptoms as Potential Risk Factors for Chronic TMD: Descriptive Data and Empirically Identified Domains from the OPPERA Case-Control Study

    Get PDF
    Clinical characteristics might be associated with temporomandibular disorders (TMD) because they are antecedent risk factors that increase the likelihood of a healthy person developing the condition or because they represent signs or symptoms of either subclinical or overt TMD. In this baseline case-control study of the multisite Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) project, 1,633 controls and 185 cases with chronic, painful TMD completed questionnaires and received clinical examinations. Odds ratios measuring association between each clinical factor and TMD were computed, with adjustment for study-site as well as age, sex, and race/ethnicity. Compared to controls, TMD cases reported more trauma, greater parafunction, more headaches and other pain disorders, more functional limitation in using the jaw, more nonpain symptoms in the facial area, more temporomandibular joint noises and jaw locking, more neural or sensory medical conditions, and worse overall medical status. They also exhibited on examination reduced jaw mobility, more joint noises, and a greater number of painful masticatory, cervical, and body muscles upon palpation. The results indicated that TMD cases differ substantially from controls across almost all variables assessed. Future analyses of follow-up data will determine whether these clinical characteristics predict increased risk for developing first-onset pain-related TM

    Identification of a Genomic Region Between SLC29A1 and HSP90AB1 Associated With Risk of Bevacizumab-Induced Hypertension: CALGB 80405 (Alliance)

    Get PDF
    Purpose: Bevacizumab is a VEGF-specific angiogenesis inhibitor indicated as an adjunct to chemotherapy for the treatment of multiple cancers. Hypertension is commonly observed during bevacizumab treatment, and high-grade toxicity can limit therapy or lead to cardiovascular complications. The factors that contribute to interindividual variability in blood pressure rise during bevacizumab treatment are not well understood.Experimental Design: To identify genomic regions associated with bevacizumab-induced hypertension risk, sequencing of candidate genes and flanking regulatory regions was performed on 61 patients treated with bevacizumab (19 cases developed early-onset grade 3 hypertension and 42 controls had no reported hypertension in the first six cycles of treatment). SNP-based tests for common variant associations and gene-based tests for rare variant associations were performed in 174 candidate genes.Results: Four common variants in independent linkage disequilibrium blocks between SLC29A1 and HSP90AB1 were among the top associations. Validation in larger bevacizumab-treated cohorts supported association between rs9381299 with early grade 3+ hypertension (P = 0.01; OR, 2.4) and systolic blood pressure >180 mm Hg (P = 0.02; OR, 2.1). rs834576 was associated with early grade 3+ hypertension in CALGB 40502 (P = 0.03; OR, 2.9). These SNP regions are enriched for regulatory elements that may potentially increase gene expression. In vitro overexpression of SLC29A1 in human endothelial cells disrupted adenosine signaling and reduced nitric oxide levels that were further lowered upon bevacizumab exposure.Conclusions: The genomic region between SLC29A1 and HSP90AB1 and its role in regulating adenosine signaling are key targets for further investigation into the pathogenesis of bevacizumab-induced hypertension

    Identification of a Genomic Region between SLC29A1 and HSP90AB1 Associated with Risk of Bevacizumab-Induced Hypertension: CALGB 80405 (Alliance).

    Get PDF
    Purpose: Bevacizumab is a VEGF-specific angiogenesis inhibitor indicated as an adjunct to chemotherapy for the treatment of multiple cancers. Hypertension is commonly observed during bevacizumab treatment, and high-grade toxicity can limit therapy or lead to cardiovascular complications. The factors that contribute to interindividual variability in blood pressure rise during bevacizumab treatment are not well understood.Experimental Design: To identify genomic regions associated with bevacizumab-induced hypertension risk, sequencing of candidate genes and flanking regulatory regions was performed on 61 patients treated with bevacizumab (19 cases developed early-onset grade 3 hypertension and 42 controls had no reported hypertension in the first six cycles of treatment). SNP-based tests for common variant associations and gene-based tests for rare variant associations were performed in 174 candidate genes.Results: Four common variants in independent linkage disequilibrium blocks between SLC29A1 and HSP90AB1 were among the top associations. Validation in larger bevacizumab-treated cohorts supported association between rs9381299 with early grade 3+ hypertension (P = 0.01; OR, 2.4) and systolic blood pressure >180 mm Hg (P = 0.02; OR, 2.1). rs834576 was associated with early grade 3+ hypertension in CALGB 40502 (P = 0.03; OR, 2.9). These SNP regions are enriched for regulatory elements that may potentially increase gene expression. In vitro overexpression of SLC29A1 in human endothelial cells disrupted adenosine signaling and reduced nitric oxide levels that were further lowered upon bevacizumab exposure.Conclusions: The genomic region between SLC29A1 and HSP90AB1 and its role in regulating adenosine signaling are key targets for further investigation into the pathogenesis of bevacizumab-induced hypertension. Clin Cancer Res; 24(19); 4734-44. Š2018 AACR

    Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a VAC14 Polymorphism That Increases Risk of Docetaxel-Induced Neuropathy

    Get PDF
    Purpose Discovery of single nucleotide polymorphisms (SNPs) that predict a patient\u27s risk of docetaxel-induced neuropathy would enable treatment individualization to maximize efficacy and avoid unnecessary toxicity. The objectives of this analysis were to discover SNPs associated with docetaxel-induced neuropathy and mechanistically validate these associations in preclinical models of drug-induced neuropathy. Experimental Design A genome-wide association study was conducted in metastatic castrate-resistant prostate cancer patients treated with docetaxel, prednisone and randomized to bevacizumab or placebo on CALGB 90401. SNPs were genotyped on the Illumina HumanHap610-Quad platform followed by rigorous quality control. The inference was conducted on the cumulative dose at occurrence of grade 3+ sensory neuropathy using a cause-specific hazard model that accounted for early treatment discontinuation. Genes with SNPs significantly associated with neuropathy were knocked down in cellular and mouse models of drug-induced neuropathy. Results 498,081 SNPs were analyzed in 623 Caucasian patients, 50 (8%) of whom experienced grade 3+ neuropathy. The 1000 SNPs most associated with neuropathy clustered in relevant pathways including neuropathic pain and axonal guidance. A SNP in VAC14 (rs875858) surpassed genome-wide significance (p=2.12×10-8 adjusted p=5.88×10-7). siRNA knockdown of VAC14 in stem cell derived peripheral neuronal cells increased docetaxel sensitivity as measured by decreased neurite processes (p=0.0015) and branches (p\u3c0.0001). Prior to docetaxel treatment VAC14 heterozygous mice had greater nociceptive sensitivity than wild-type litter mate controls (p=0.001). Conclusions VAC14 should be prioritized for further validation of its potential role as a predictor of docetaxel-induced neuropathy and biomarker for treatment individualization

    Study Methods, Recruitment, Sociodemographic Findings, and Demographic Representativeness in the OPPERA Study

    Get PDF
    This paper describes methods used in the project “Orofacial Pain Prospective Evaluation and Risk Assessment” (OPPERA) and evaluates socio-demographic characteristics associated with temporomandibular disorders (TMD) in the OPPERA case-control study. Representativeness was investigated by comparing socio-demographic profiles of OPPERA participants with population census profiles of counties near study sites and by comparing age- and gender-associations with TMD in OPPERA and the 2007-09 US National Health Interview Survey. Volunteers aged 18-44 years were recruited at four US study sites: 3,263 people without TMD were enrolled into the prospective cohort study; 1,633 of them were selected as controls for the baseline case-control study. Cases were 185 volunteers with examiner-classified TMD. Distributions of some demographic characteristics among OPPERA participants differed from census profiles, although there was less difference in socio-economic profiles. Odds of TMD was associated with greater age in this 18-44 year range; females had three times the odds of TMD as males; and relative to non-Hispanic-Whites, other racial groups had one-fifth the odds of TMD. Age- and gender-associations with chronic TMD were strikingly similar to associations observed in the US population. Assessments of representativeness in this demographically diverse group of community volunteers suggest that OPPERA case-control findings have good internal validity

    Genome-Wide Meta-Analysis Validates a Role for S1PR1 in Microtubule Targeting Agent-Induced Sensory Peripheral Neuropathy

    Get PDF
    Microtubule targeting agents (MTAs) are anticancer therapies commonly prescribed for breast cancer and other solid tumors. Sensory peripheral neuropathy (PN) is the major dose-limiting toxicity for MTAs and can limit clinical efficacy. The current pharmacogenomic study aimed to identify genetic variations that explain patient susceptibility and drive mechanisms underlying development of MTA-induced PN. A meta-analysis of genome-wide association studies (GWAS) from two clinical cohorts treated with MTAs (CALGB 40502 and CALGB 40101) was conducted using a Cox regression model with cumulative dose to first instance of grade 2 or higher PN. Summary statistics from a GWAS of European subjects (n = 469) in CALGB 40502 that estimated cause-specific risk of PN were meta-analyzed with those from a previously published GWAS of European ancestry (n = 855) from CALGB 40101 that estimated the risk of PN. Novel single nucleotide polymorphisms in an enhancer region downstream of sphingosine-1-phosphate receptor 1 (S1PR1 encoding S1PR1; e.g., rs74497159, βCALGB 40101 per allele log hazard ratio (95% CI) = 0.591 (0.254 – 0.928), βCALGB 40502 per allele log hazard ratio (95% CI) = 0.693 (0.334 – 1.053); PMETA = 3.62×10−7) were the most highly ranked associations based on P-values with risk of developing grade 2 and higher PN. In silico functional analysis identified multiple regulatory elements and potential enhancer activity for S1PR1 within this genomic region. Inhibition of S1PR1 function in iPSC-derived human sensory neurons shows partial protection against paclitaxel-induced neurite damage. These pharmacogenetic findings further support ongoing clinical evaluations to target S1PR1 as a therapeutic strategy for prevention and/or treatment of MTA-induced neuropathy
    corecore