1,940 research outputs found

    Energy and time resolution for a LYSO matrix prototype of the Mu2e experiment

    Full text link
    We have measured the performances of a LYSO crystal matrix prototype tested with electron and photon beams in the energy range 60-450 MeV. This study has been carried out to determine the achievable energy and time resolutions for the calorimeter of the Mu2e experiment.Comment: 2 pages, 3 figures, 13th Pisa Meeting on Advanced Detector

    Improved Limits on B0B^{0} decays to invisible (+γ)(+\gamma) final states

    Get PDF
    We establish improved upper limits on branching fractions for B0 decays to final States 10 where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 million BB pairs collected at the Y(4S) resonance by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National Accelerator Laboratory, we establish upper limits at the 90% confidence level of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.

    Characterization of a prototype for the electromagnetic calorimeter of the Mu2e experiment

    Get PDF
    The Mu2e experiment at Fermilab searches the neutrinoless conversion of the muon into electron in the field of an Aluminum nucleus. The observation of this process would be a proof of the Charged Lepton Flavor Violation (CLFV). In case of no observation, the upper limit will be set to Rμe < 6×10−17 @ 90% CL, improving by a factor of 4 the previous best determination. The Mu2e detector apparatus consists of a straw tubes tracker that will measure the electrons momentum, and an electromagnetic calorimeter that provides a tracking-independent measurement of the electron energy, time and position. In this paper, we describe the baseline project of the EMC and present results in terms of performances and R&D

    Belle II Executive Summary

    Full text link
    Belle II is a Super BB Factory experiment, expected to record 50 ab1^{-1} of e+ee^+e^- collisions at the SuperKEKB accelerator over the next decade. The large samples of BB mesons, charm hadrons, and tau leptons produced in the clean experimental environment of e+ee^+e^- collisions will provide the basis of a broad and unique flavor-physics program. Belle II will pursue physics beyond the Standard Model in many ways, for example: improving the precision of weak interaction parameters, particularly Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and phases, and thus more rigorously test the CKM paradigm, measuring lepton-flavor-violating parameters, and performing unique searches for missing-mass dark matter events. Many key measurements will be made with world-leading precision.Comment: 7 pages, to be submitted to the "Rare and Precision Measurements Frontier" of the APS DPF Community Planning Exercise Snowmass 202

    Exclusive Measurements of b -> s gamma Transition Rate and Photon Energy Spectrum

    Get PDF
    We use 429 fb1^{-1} of e+ee^+e^- collision data collected at the Υ(4S)\Upsilon(4S) resonance with the BABAR detector to measure the radiative transition rate of bsγb\rightarrow s\gamma with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be B(BˉXsγ)=(3.29±0.19±0.48)×104\mathcal{B}(\bar B \rightarrow X_{s}\gamma)=(3.29\pm 0.19\pm 0.48)\times 10^{-4} where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, mbm_{b} and μπ2\mu_{\pi}^{2}, in the kinetic and shape function models.Comment: 18 pages, 14 pdf figures, submitted to Phys. Rev.

    First Test Results of the Trans-Impedance Amplifier Stage of the Ultra-fast HPSoC ASIC

    Full text link
    We present the first results from the HPSoC ASIC designed for readout of Ultra-fast Silicon Detectors. The 4-channel ASIC manufactured in 65 nm CMOS by TSMC has been optimized for 50 um thick AC-LGAD. The evaluation of the analog front end with \b{eta}-particles impinging on 3x3 AC-LGAD arrays (500 um pitch, 200x200 um2 metal) confirms a fast output rise time of 600 ps and good timing performance with a jitter of 45 ps. Further calibration experiments and TCT laser studies indicate some gain limitations that are being investigated and are driving the design of the second-generation pre-amplification stages to reach a jitter of 15 ps.Comment: 7 pages, 6 figure

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    The CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3-4 microns RMS in the barrel and 3-14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance
    corecore