6,907 research outputs found

    Microstructure theory and the foreign exchange market

    Get PDF
    Foreign exchange ; Microeconomics

    The great deposit insurance debate

    Get PDF
    Deposit insurance

    High-field magnetization of Dy2O3

    Get PDF
    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 deg and 4.2 K, in applied magnetic fields ranging to 7 Teslas. A linear dependence of magnetization on applied field is observable in high field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is 2.77 + or - 0.08 Bohr magnetons per ion

    Space solar cell research: Problems and potential

    Get PDF
    The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed

    Two faces of financial innovation

    Get PDF
    Securities ; Financial services industry

    Magnetization and magnetic susceptibility of DyH3

    Get PDF
    The magnetization and differential magnetic susceptibility of powdered samples of DyH3 have been measured at 4.2 K in applied magnetic fields ranging to 9 Teslas. The differential magnetic susceptibility has also been studied in zero applied field as a function of temperature. The magnetization data are described by an equation of the form M = aB/(1 + bB + cB. The ratio a/b is a measure of the saturation magnetization and gives an effective moment of 5.12 Bohr magnetons per ion. The zero field susceptibility exhibits a maximum at T = 3.45 K, and an inflection point near 2.85 K. The susceptibility at 4.2 K has a 1/B squared dependence on the applied magnetic field for B approximately greater than 0.3 Teslas

    An introduction to complete markets

    Get PDF
    Markets

    Potential high efficiency solar cells: Applications from space photovoltaic research

    Get PDF
    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed
    corecore