21 research outputs found

    Meissner screening as a probe for inverse superconductor-ferromagnet proximity effects

    Get PDF
    Funding: We acknowledge the support of the EPSRC through Grants No. EP/I031014/1, No. EP/J01060X, No. EP/J010634/1, No. EP/L015110/1, No. EP/R031924/1, and No. EP/R023522/1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 743791 (SUPERSPIN). R.S. acknowledges funding under ETH Zurich Postdoctoral Fellowship 20-1FEL-36.We present experimental results on the observed flux screening in proximity coupled superconductor-ferromagnet thin film structures using Nb and Co as the superconductor and ferromagnet respectively. Using the low-energy muon-spin rotation technique to locally probe the magnetic flux density, we find that the addition of the ferromagnet (F) increases the total flux screening inside the superconductor. Two contributions can be distinguished. One is consistent with the predicted spin-polarization (or magnetic proximity) effect, while the other is in line with the recently emerged electromagnetic (EM) proximity models. Furthermore, we show that the addition of a few nanometers of a normal metallic layer between the Nb and the Co fully destroys the contribution due to electromagnetic proximity. This is unanticipated by the current theory models in which the magnetization in the F layer is assumed to be the only driving force for the EM effect and suggests the role of additional factors. Further experiments to explore the influence of the direction of the F magnetization also reveal deviations from theory. These findings are an important step forward in improving the theoretical description and understanding of proximity coupled systems.Publisher PDFPeer reviewe

    The role of ion dissolution in metal and metal oxide surface inactivation of SARS CoV-2

    Get PDF
    Funding: This work was funded by UKRI-NIHR (MRC MR/V028464/1) COVID-19 Rapid Response Initiative.Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper’s anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of “uncomplexed” copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.PostprintPeer reviewe

    Control of superconductivity with a single ferromagnetic layer in niobium/erbium bilayers

    Get PDF
    Superconducting spintronics in hybrid superconductor{ferromagnet (S{F) heterostructures provides an exciting potential new class of device. The prototypical super-spintronic device is the superconducting spin-valve, where the critical temperature, Tc, of the S-layer can be controlledby the relative orientation of two (or more) F-layers. Here, we show that such control is also possible in a simple S/F bilayer. Using eld history to set the remanent magnetic state of a thin Er layer, we demonstrate for a Nb/Er bilayer a high level of control of both Tc and the shape of the resistive transition, R(T), to zero resistance. We are able to model the origin of the remanent magnetization, treating it as an increase in the e ective exchange eld of the ferromagnet and link this, using conventional S{F theory, to the suppression of Tc. We observe stepped features in the R(T) which we argue is due to a fundamental interaction of superconductivity with inhomogeneous ferromagnetism, a phenomena currently lacking theoretical description

    Continuously tuneable critical current in superconductor-ferromagnet multilayers

    Get PDF
    We demonstrate that the critical current of superconducting Nb/Ni multilayers can be continuously tuned by up to a factor of three during magnetization reversal of the Ni films under an applied in-plane magnetic field. Our observations are in reasonably good agreement with a model of vortex pinning by Bloch domain walls that proliferate in the samples during magnetization reversal, whereby each vortexinteracts with at most one wall in any of the Ni layers. Our model suggests ways in which the controllable pinning effect could be significantly enhanced, with important potential applications in tuneable superconducting devices

    Continuously tuneable critical current in superconductor-ferromagnet multilayers

    No full text
    We demonstrate that the critical current of superconducting Nb/Ni multilayers can be continuously tuned by up to a factor of three during magnetization reversal of the Ni films under an applied in-plane magnetic field. Our observations are in reasonably good agreement with a model of vortex pinning by Bloch domain walls that proliferate in the samples during magnetization reversal, whereby each vortex interacts with at most one wall in any of the Ni layers. Our model suggests ways in which the controllable pinning effect could be significantly enhanced, with important potential applications in tuneable superconducting devices

    Dataset for "Continuously Tuneable Critical Current in Superconductor-Ferromagnet Multilayers"

    No full text
    Datasets underpinning the four Figures for "Continuously Tuneable Critical Current in Superconductor-Ferromagnet Multilayers" which is accepted for publication in Applied Physics Letters

    Beating the Stoner criterion using molecular interfaces

    No full text
    Only three elements are ferromagnetic at room temperature: the transition metals iron, cobalt and nickel. The Stoner criterion explains why iron is ferromagnetic but manganese, for example, is not, even though both elements have an unfilled 3d shell and are adjacent in the periodic table: according to this criterion, the product of the density of states and the exchange integral must be greater than unity for spontaneous spin ordering to emerge. Here we demonstrate that it is possible to alter the electronic states of non-ferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, to overcome the Stoner criterion and make them ferromagnetic at room temperature. This effect is achieved via interfaces between metallic thin films and C60 molecular layers. The emergent ferromagnetic state exists over several layers of the metal before being quenched at large sample thicknesses by the materiala € s bulk properties. Although the induced magnetization is easily measurable by magnetometry, low-energy muon spin spectroscopy provides insight into its distribution by studying the depolarization process of low-energy muons implanted in the sample. This technique indicates localized spin-ordered states at, and close to, the metal-molecule interface. Density functional theory simulations suggest a mechanism based on magnetic hardening of the metal atoms, owing to electron transfer. This mechanism might allow for the exploitation of molecular coupling to design magnetic metamaterials using abundant, non-toxic components such as organic semiconductors. Charge transfer at molecular interfaces may thus be used to control spin polarization or magnetization, with consequences for the design of devices for electronic, power or computing applications (see, for example, refs 6 and 7)

    Dataset for "Continuously Tuneable Critical Current in Superconductor-Ferromagnet Multilayers"

    No full text
    Datasets underpinning the four Figures for "Continuously Tuneable Critical Current in Superconductor-Ferromagnet Multilayers" which is accepted for publication in Applied Physics Letters
    corecore