37 research outputs found

    An Overview of Measurement Comparisons from the INTEX-B/MILAGRO Airborne Field Campaign

    Get PDF
    As part of the NASA's INTEX-B mission, the NASA DC-8 and NSF C-130 conducted three wing-tip to wing-tip comparison flights. The intercomparison flights sampled a variety of atmospheric conditions (polluted urban, non-polluted, marine boundary layer, clean and polluted free troposphere). These comparisons form a basis to establish data consistency, but also should also be viewed as a continuation of efforts aiming to better understand and reduce measurement differences as identified in earlier field intercomparison exercises. This paper provides a comprehensive overview of 140 intercomparisons of data collected as well as a record of the measurement consistency demonstrated during INTEX-B. It is the primary goal to provide necessary information for the future research to determine if the observations from different INTEX-B platforms/instrument are consistent within the PI reported uncertainties and used in integrated analysis. This paper may also contribute to the formulation strategy for future instrument developments. For interpretation and most effective use of these results, the reader is strongly urged to consult with the instrument principle investigator

    Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations

    Get PDF
    We examine wet scavenging of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft observations. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble species within the error bars of the observations. The simulated SEs of all species except nitric acid (HNO_3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the observations, we must assume zero ice retention for formaldehyde (CH_2O) and hydrogen peroxide (H_2O_2) and complete retention for methyl hydrogen peroxide (CH_3OOH) and sulfur dioxide (SO_2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO_3 and less removal of CH_3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NO_x), processes that may explain the observed differences in HNO_3 and CH_3OOH scavenging

    Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane sources: A case study from the Colorado Front Range

    Get PDF
    Global atmospheric concentrations of methane (CH4), a powerful greenhouse gas, are increasing, but because there are many natural and anthropogenic sources of CH4, it is difficult to assess which sources may be increasing in magnitude. Here we present a data set of ÎŽ2H-CH4 measurements of individual sources and air in the Colorado Front Range, USA. We show that ÎŽ2H-CH4, but not ÎŽ13C, signatures are consistent in air sampled downwind of landfills, cattle feedlots, and oil and gas wells in the region. Applying these source signatures to air in ground and aircraft samples indicates that at least 50% of CH4 emitted in the region is biogenic, perhaps because regulatory restrictions on leaking oil and natural gas wells are helping to reduce this source of CH4. Source apportionment tracers such as ÎŽ2H may help close the gap between CH4 observations and inventories, which may underestimate biogenic as well as thermogenic sources

    Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.

    Get PDF
    We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models

    High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity.

    Get PDF
    Mammalian models of human disease are expensive and subject to ethical restrictions. Here, we present an independent platform for high-throughput screening, using larvae of the tobacco hornworm Manduca sexta, combining diagnostic imaging modalities for a comprehensive characterization of aberrant phenotypes. For validation, we use bacterial/chemical-induced gut inflammation to generate a colitis-like phenotype and identify significant alterations in morphology, tissue properties, and intermediary metabolism, which aggravate with disease progression and can be rescued by antimicrobial treatment. In independent experiments, activation of the highly conserved NADPH oxidase DUOX, a key mediator of gut inflammation, leads to similar, dose-dependent alterations, which can be attenuated by pharmacological interventions. Furthermore, the developed platform could differentiate pathogens from mutualistic gastrointestinal bacteria broadening the scope of applications also to microbiomics and host-pathogen interactions. Overall, larvae-based screening can complement mammals in preclinical studies to explore innate immunity and host-pathogen interactions, thus representing a substantial contribution to improve mammalian welfare

    Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002

    Get PDF
    Regional modeling analysis for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment over the eastern Pacific and U.S. West Coast is performed using a multiscale modeling system, including the regional tracer model Chemical Weather Forecasting System (CFORS), the Sulfur Transport and Emissions Model 2003 (STEM-2K3) regional chemical transport model, and an off-line coupling with the Model of Ozone and Related Chemical Tracers (MOZART) global chemical transport model. CO regional tracers calculated online in the CFORS model are used to identify aircraft measurement periods with Asian influences. Asian-influenced air masses measured by the National Oceanic and Atmospheric Administration (NOAA) WP-3 aircraft in this experiment are found to have lower ΔAcetone/ΔCO, ΔMethanol /ΔCO, and ΔPropane/ ΔEthyne ratios than air masses influenced by U.S. emissions, reflecting differences in regional emission signals. The Asian air masses in the eastern Pacific are found to usually be well aged (\u3e5 days), to be highly diffused, and to have low NOy levels. Chemical budget analysis is performed for two flights, and the O3 net chemical budgets are found to be negative (net destructive) in the places dominated by Asian influences or clear sites and positive in polluted American air masses. During the trans-Pacific transport, part of gaseous HNO3 was converted to nitrate particle, and this conversion was attributed to NOy decline. Without the aerosol consideration, the model tends to overestimate HNO3 background concentration along the coast region. At the measurement site of Trinidad Head, northern California, high- concentration pollutants are usually associated with calm wind scenarios, implying that the accumulation of local pollutants leads to the high concentration. Seasonal variations are also discussed from April to May for this site. A high-resolution nesting simulation with 12-km horizontal resolution is used to study the WP-3 flight over Los Angeles and surrounding areas. This nested simulation significantly improved the predictions for emitted and secondary generated species. The difference of photochemical behavior between the coarse (60-km) and nesting simulations is discussed and compared with the observation. Copyright 2004 by the American Geophysical Union
    corecore