138 research outputs found

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Numerical Solution of Differential Equations by the Parker-Sochacki Method

    Get PDF
    A tutorial is presented which demonstrates the theory and usage of the Parker-Sochacki method of numerically solving systems of differential equations. Solutions are demonstrated for the case of projectile motion in air, and for the classical Newtonian N-body problem with mutual gravitational attraction.Comment: Added in July 2010: This tutorial has been posted since 1998 on a university web site, but has now been cited and praised in one or more refereed journals. I am therefore submitting it to the Cornell arXiv so that it may be read in response to its citations. See "Spiking neural network simulation: numerical integration with the Parker-Sochacki method:" J. Comput Neurosci, Robert D. Stewart & Wyeth Bair and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717378

    On partial derivatives of multivariate Bernstein polynomials

    Get PDF
    It is shown that Bernstein polynomials for a multivariate function converge to this function along with partial derivatives provided that the latter derivatives exist and are continuous. This result may be useful in some issues of stochastic calculus

    As-Rigid-As-Possible Surface Morphing

    Get PDF
    This paper presents a new morphing method based on the “as-rigid-as-possible” approach. Unlike the original as-rigid-as-possible method, we avoid the need to construct a consistent tetrahedral mesh, but instead require a consistent triangle surface mesh and from it create a tetrahedron for each surface triangle. Our new approach has several significant advantages. It is much easier to create a consistent triangle mesh than to create a consistent tetrahedral mesh. Secondly, the equations arising from our approach can be solved much more efficiently than the corresponding equations for a tetrahedral mesh. Finally, by incorporating the translation vector in the energy functional controlling interpolation, our new method does not need the user to arbitrarily fix any vertex to obtain a solution, allowing artists automatic control of interpolated mesh positions

    Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klaasi (Araneae : Theraphosidae) in Mexico

    No full text
    Brachypelma, a genus of nine endangered tarantula species in Mexico, is the only group of spiders included in Appendix II of CITES, owing to habitat degradation and illegal trafficking. However, while the majority of the nine species of Brachypelma are thought to be threatened, little is known of their ecology and distribution. Brachypelma klaasi is the rarest species, occurring in a few isolated populations on the Pacific coast of Mexico. We present an analysis of population distribution and micro-habitat requirements of B. klaasi over different spatial scales within the biological reserve at Chamela, Jalisco as part of a wider ecological study of the endangered Brachypelma group. Burrows and dispersing spiders were confined to a southern area of the reserve covering approximately 0.5 km(2). Within this area, burrows were not aggregated at lower spatial scales (2(4)-2(16) m(2)), unlike other related species. Also, there was no evidence that intra-specific interactions (either positive or negative interactions) influenced the distribution of burrows. Distribution of burrows at low spatial scales was related to low afternoon temperatures and high humidity in mid-summer. These abiotic factors may influence the survival and development of eggs and spiderlings, and appear to be more important in governing the distribution of B. klaasi than are food resources or intra-specific interactions. We discuss how these findings may facilitate the re-introduction of captive-bred individuals of B. klaasi and other Brachypelma species

    Habitat structure and egg distributions in the processionary caterpillar Ochrogaster lunifer: lessons for conservation and pest management

    No full text
    1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems
    corecore