811 research outputs found
Divided Differences of Implicit Functions
Under general conditions, the equation implicitly defines
locally as a function of . In this article, we express divided differences
of in terms of bivariate divided differences of , generalizing a recent
result on divided differences of inverse functions
Transfinite mean value interpolation in general dimension
AbstractMean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension
Optimal spline spaces for -width problems with boundary conditions
In this paper we show that, with respect to the norm, three classes of
functions in , defined by certain boundary conditions, admit optimal
spline spaces of all degrees , and all these spline spaces have
uniform knots.Comment: 17 pages, 4 figures. Fixed a typo. Article published in Constructive
Approximatio
Nodal bases for the serendipity family of finite elements
Using the notion of multivariate lower set interpolation, we construct nodal
basis functions for the serendipity family of finite elements, of any order and
any dimension. For the purpose of computation, we also show how to express
these functions as linear combinations of tensor-product polynomials.Comment: Pre-print of version that will appear in Foundations of Computational
Mathematic
Gradient bounds for Wachspress coordinates on polytopes
We derive upper and lower bounds on the gradients of Wachspress coordinates
defined over any simple convex d-dimensional polytope P. The bounds are in
terms of a single geometric quantity h_*, which denotes the minimum distance
between a vertex of P and any hyperplane containing a non-incident face. We
prove that the upper bound is sharp for d=2 and analyze the bounds in the
special cases of hypercubes and simplices. Additionally, we provide an
implementation of the Wachspress coordinates on convex polyhedra using Matlab
and employ them in a 3D finite element solution of the Poisson equation on a
non-trivial polyhedral mesh. As expected from the upper bound derivation, the
H^1-norm of the error in the method converges at a linear rate with respect to
the size of the mesh elements.Comment: 18 pages, to appear in SINU
Tetrisation of triangular meshes and its application in shape blending
The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile
technique for morphing, surface modelling, and mesh editing. We discuss an
improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh
in 3D space, we introduce a method to associate a tetrahedral structure, which
encodes the geometry of the original mesh. 2. We use a Lie algebra based method
to interpolate local transformation, which provides better handling of rotation
with large angle. 3. We propose a new error function to compile local
transformations into a global piecewise linear map, which is rotation invariant
and easy to minimise. We implemented a shape blender based on our algorithm and
its MIT licensed source code is available online
Local RBF approximation for scattered data fitting with bivariate splines
In this paper we continue our earlier research [4] aimed at developing effcient methods of local approximation suitable for the first stage of a spline based two-stage scattered data fitting algorithm. As an improvement to the pure polynomial local approximation method used in [5], a hybrid polynomial/radial basis scheme was considered in [4], where the local knot locations for the RBF terms were selected using a greedy knot insertion algorithm. In this paper standard radial local approximations based on interpolation or least squares are considered and a faster procedure is used for knot selection, signicantly reducing the computational cost of the method. Error analysis of the method and numerical results illustrating its performance are given
Pole Dancing: 3D Morphs for Tree Drawings
We study the question whether a crossing-free 3D morph between two
straight-line drawings of an -vertex tree can be constructed consisting of a
small number of linear morphing steps. We look both at the case in which the
two given drawings are two-dimensional and at the one in which they are
three-dimensional. In the former setting we prove that a crossing-free 3D morph
always exists with steps, while for the latter steps
are always sufficient and sometimes necessary.Comment: Appears in the Proceedings of the 26th International Symposium on
Graph Drawing and Network Visualization (GD 2018
Convexity-Increasing Morphs of Planar Graphs
We study the problem of convexifying drawings of planar graphs. Given any
planar straight-line drawing of an internally 3-connected graph, we show how to
morph the drawing to one with strictly convex faces while maintaining planarity
at all times. Our morph is convexity-increasing, meaning that once an angle is
convex, it remains convex. We give an efficient algorithm that constructs such
a morph as a composition of a linear number of steps where each step either
moves vertices along horizontal lines or moves vertices along vertical lines.
Moreover, we show that a linear number of steps is worst-case optimal.
To obtain our result, we use a well-known technique by Hong and Nagamochi for
finding redrawings with convex faces while preserving y-coordinates. Using a
variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and
Nagamochi's result which comes with a better running time. This is of
independent interest, as Hong and Nagamochi's technique serves as a building
block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201
- …
