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Summary

This thesis studies two aspects of polynomial interpolation theory. The first part
sets forth explicit formulas for the coefficients of polynomial interpolants to implicit
functions. A formula for the higher-order derivatives of implicit functions appears as
a limiting case of these formulas. The second part delves into certain configurations of
points in space — generalized principal lattices — that are well suited as interpolation
points. Applying the theory of real algebraic curves then allows the construction of
many new examples of such configurations.
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1
Introduction to polynomial interpolation

It is an old problem in mathematics to estimate the value of a function at certain
points from known values at other points. In classical times, such methods were used
to construct tables with values of complicated functions, like the logarithm, trigono-
metric functions, and more recently statistical density functions. These lookup tables,
as they are now called, had a wide range of practical applications, from computations
in celestial mechanics to nautical navigation.

More generally, the process of reconstructing a curve, surface, or any other geometric
object from certain known data is called interpolation, a word that is derived from the
Latin word interpolare which means “to refurbish” or “to patch” [76]. In the context
of mathematics, the word interpolation was used by J. Wallis as early as 1655 [2, 83].

These days, applications range over many different fields of pure and applied math-
ematics. Besides the evaluation of transcendental functions mentioned above, interpo-
lation theory finds applications in numerical differentiation, numerical integration of
differential equations, typography, and the computer-aided geometric design of cars,
ships, and airplanes.

In some sense, polynomials are the simplest type of interpolants to work with, as
their definition only involves a finite number of additions, subtractions, and multiplica-
tions. The fact that polynomial interpolants can suffer from Runge’s phenomenon (see
Figure 1.1) [30,69] has given them a slightly bad reputation. Their simplicity, however,
makes them perfectly suitable to be used as the building blocks of other interpolating
functions with better behaviour.

A highly popular example are the splines, which are defined piecewise by polyno-
mials. These functions can avoid Runge’s phenomenon, have good convergence, can be
evaluated accurately, and are flexible with respect to manipulation of the data. After
splines were used for the first time by Schoenberg in 1946 for the purpose of approxi-
mating functions [70–72], the literature on splines has grown to a vast theory that is
very popular in the industry.

Another example is that of blending interpolants, where local interpolants are com-
bined into a single global interpolant. A classical case of this is Shepard’s method [73],

1



2 CHAPTER 1. INTRODUCTION TO POLYNOMIAL INTERPOLATION

Figure 1.1: The figure shows fourth order (drawn dashed) and eighth order (drawn
dotted) polynomial interpolants to the Runge function f(x) = 1

1+x2 (drawn solid) at
equidistant data points in the interval [−5, 5]. The Runge phenomenon describes the
peculiarity that the higher the degree of the interpolating polynomial, the more wildly it
oscillates at the boundary of the interpolation interval (and therefore the more it differs
from f in the supremum norm).

where a global interpolant at a point x is formed by taking weighted linear combina-
tions of known values {yi} at the data points {xi}, the weights being the reciprocals
of some distance function between x and the {xi}. More recently, Floater and Hor-
mann showed how weighted linear combinations of polynomial interpolants give rise to
(a family of) rational interpolants that admit a barycentric form, have a high rate of
approximation, and are without real poles [34].

This thesis discusses a few known results, and several new results, in polynomial in-
terpolation theory. This chapter introduces some of the basic concepts in interpolation
theory, while preparing for the material of the other chapters. Each of the next two
chapters comprises a paper, one accepted for publication by Mathematics of Computa-
tion and the other ready for submission, on formulas for divided differences of implicit
functions. While the presentation of the first paper was discussed in detail with my
co-author Prof. Michael Floater, I developed and drafted both papers. A formula for
the higher-order derivatives of implicit functions appears as a limiting case of these
formulas. Insofar as the number of terms in these formulas describes a previously un-
known pattern, I published these sequences in The On-Line Encyclopedia of Integer
Sequences. The final chapter shows explicitly how algebraic curves of a certain type
give rise to generalized principal lattices in higher-dimensional space, yielding many
new examples of such meshes.

1.1 Univariate polynomial interpolation

In this section we introduce polynomial interpolation in its simplest form, namely as the
study of interpolating polynomials on the real line. Already in this case, we encounter
several important notions needed in the following chapters.

Suppose that we are given n + 1 distinct real numbers x0 < x1 < · · · < xn, which
we refer to as the data points, and corresponding real numbers f0, f1, . . . , fn, called the
(data) values. We wish to find a function p that passes through these points, in the
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x
0

x
1

xn

f
0

f
1

fn

p

Figure 1.2: The figure shows points (x0, f0), (x1, f1), . . . , (xn, fn) in the plane together
with an interpolating function p.

sense that

p(xi) = fi, for i = 0, 1, . . . , n. (1.1)

This univariate interpolation problem is shown geometrically in Figure 1.2.
Let Πn be the vector space of univariate polynomials with real coefficients and of

degree at most n. If we require p ∈ Πn, then any polynomial p(x) = a0+a1x+· · ·+anxn
satisfies (1.1) if and only if it satisfies the linear system⎡⎢⎢⎢⎣

1 x0 · · · xn0
1 x1 · · · xn1
...

...
. . .

...
1 xn · · · xnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a0
a1
...
an

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f0
f1
...
fn

⎤⎥⎥⎥⎦ . (1.2)

The above matrix is a Vandermonde matrix, and, by induction on n, its determinant
can be shown to be

∏
0≤i<j≤n(xj−xi). As long as the data points are distinct, therefore,

the interpolation problem (1.1) can be seen to have a unique solution within Πn. Note
that this uniqueness only depends on the configuration of the data points {xi} and
not on the values {fi}. This phenomenon becomes very complex in the multivariate
case, and it forms the foundation for our study of the generalized principal lattices in
Chapter 4.

Although inverting the linear system (1.2) provides a theoretical solution to the
univariate interpolation problem (1.1), this method is rarely used in practice. One
reason for this is that the condition number of the Vandermonde matrix may be very
large [39, 40], in which case Gaussian elimination typically leads to large numerical
errors. Secondly, standard Gaussian elimination requires O(n3) operations, which is
often too slow in practice.

The next two sections introduce classical methods much better suited for construct-
ing the univariate interpolating polynomial. In each case, the trick is to choose a basis
of Πn that is convenient for the given configuration of data points.

1.1.1 Newton form of the interpolation polynomial

Suppose we are given the univariate interpolation problem (1.1). Let us try to construct
the solution pn ∈ Πn recursively from a supposedly known polynomial pn−1 of degree
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n− 1 with values f0, f1, . . . , fn−1 at the points x0, x1, . . . , xn−1.
The unique interpolation polynomial of degree 0 with value f0 at x0 is of course

p0(x) = b0 := f0. Adding any linear term of the form b1(x − x0) will not change
the value at x0. Solving b0 + b1(x1 − x0) = f1 for b1, we obtain a polynomial p1(x) =
b0+b1(x−x0) that satisfies (1.1) for n = 1. Next, adding any quadratic term of the form
b2(x−x0)(x−x1) will not change the values at x0 and x1. Solving b0+b1(x2−x0)+b2(x2−
x0)(x2−x1) = f2 for b2 yields a polynomial p2(x) = b0+b1(x−x0)+b2(x−x0)(x−x1) that
satisfies (1.1) for n = 2. Continuing this process, we arrive at the solution p = pn ∈ Πn

to (1.1) in the Newton form

p(x) = b0 + b1(x− x0) + b2(x− x0)(x− x1) + · · ·+ bn(x− x0) · · · (x− xn−1). (1.3)

Once the coefficients b0, b1, . . . , bn are known, the Newton form of the interpolating
polynomial can be evaluated efficiently akin to Horner’s rule for nested multiplication,
by writing

pn(x) = b0 + (x− x0)(b1 + (x− x1)(b2 + · · ·+ (x− xn−1)bn) · · · ). (1.4)

Note that the Newton form expresses the unique solution p ∈ Πn to (1.1) in terms
of the Newton basis{

1, (x− x0), (x− x0)(x− x1), . . . , (x− x0) · · · (x− xn−1)
}

(1.5)

of Πn. In this coordinate system, the linear system (1.2) becomes the triangular system⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
1 x1 − x0 0 · · · 0
1 x2 − x0 (x2 − x0)(x1 − x0) · · · 0
...

...
...

. . .
...

1 xn − x0 (xn − x0)(xn − x1) · · · (xn − x0) · · · (xn − xn−1)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
b0
b1
b2
...
bn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f0
f1
f2
...
fn

⎤⎥⎥⎥⎥⎥⎦ ,

which can be solved directly. In practice, however, one computes the coefficients as
follows. Denoting the kth coefficient bk by [x0, x1, . . . , xk]f , it can be shown (see [47,
Section 6.1]) that these coefficients can be obtained recursively by setting [x0]f := f0
and

[x0, x1, . . . , xk]f :=
[x1, x2, . . . , xk]f − [x0, x1, . . . , xk−1]f

xk − x0
, k = 1, 2, . . . , n. (1.6)

See Table 1.1 for a graphical depiction of the recursion process. For this reason, the
kth coefficient is called the kth order divided difference of f at the points x0, x1, . . . , xk.
See [6] for a recent survey.

One immediately finds the expression [x0, x1]f = f1−f0
x1−x0

for the first order divided
difference of f at x0, x1. In case the values f0, f1, . . . , fn represent the values of an
underlying smooth function f(x) at the data points x0, x1, . . . , xn, one sees that [x0, x1]f
represents the slope of the secant through the points

(
x0, f(x0)

)
and

(
x1, f(x1)

)
. In

particular, one has the limiting case limx0,x1→x[x0, x1]f = f ′(x). More generally, we
have the following theorem from [47, p. 248].
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data 0th order 1st order 2nd order 3rd order

x0, f0 → [x0]f
↘

[x0, x1]f
↗ ↘

x1, f1 → [x1]f [x0, x1, x2]f
↘ ↗ ↘

[x1, x2]f [x0, x1, x2, x3]f
↗ ↘ ↗

x2, f2 → [x2]f [x1, x2, x3]f
↘ ↗

[x2, x3]f
↗

x3, f3 → [x3]f

Table 1.1: The recursive process from (1.6) for computing the third order divided
difference [x0, x1, x2, x3]f from the data points x0, x1, x2, x3 and corresponding values
f0, f1, f2, f3.

Theorem 1 (mean value theorem for divided differences). Let x0, x1, . . . , xn be n +
1 distinct points and let f have a continuous derivative of order n in the interval
(min{x0, . . . , xn},max{x0, . . . , xn}). Then, for some point ξ in this interval,

[x0, . . . , xn]f =
1

k!
f (k)(ξ).

As a direct consequence, one finds

lim
x0,x1,...,xn→x

[x0, x1, . . . , xn]f =
1

n!
f (n)(x).

In this sense, divided differences can be thought of as a [discrete] generalization of
derivatives. One can therefore set out to generalize the theory of differential calculus
to the divided difference setting. In this manner, a divided difference version of a
Leibniz rule was found by Popoviciu [66,67] and Steffensen [79]. More recently, divided
difference versions of univariate chain rules were found in [35,84] and multivariate chain
rules in [33, 85], analogously to Faà di Bruno’s formula for derivatives. In [36], one of
these univariate chain rules was applied to find a formula for the (higher-order) divided
differences of the inverse of a function. In the paper of Chapter 2, we generalize this
formula to one that expresses the divided differences of a function y, implicitly defined
by a function g : R2 −→ R in the sense that g

(
x, y(x)

)
= 0 and ∂g

∂y

(
x, y(x)

)
�= 0 in

some domain in R
2, in terms of divided differences of g.

For a given function f , let pn be the unique polynomial of degree at most n inter-
polating f at the data points x0, x1, . . . , xn. As described earlier in this section, adding
a term [x0, . . . , xn, xn+1]f · (x − x0) · · · (x − xn) to pn yields the interpolant of degree
at most n+1 with, in addition, value f(xn+1) at xn+1. In particular, taking x = xn+1,
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f=0

f=1

p

l
2

l
0

l
1

Figure 1.3: Drawn dashed, are the Lagrange polynomials l0, l1, l2 for the data (x0, f0) =
(1, 2), (x1, f1) = (3, 3), and (x2, f2) = (4, 2.5). Note that lj(xi) = δi,j . The Lagrange form
of the interpolating polynomial p, drawn solid, is found by taking the linear combination
p(x) = f0l0(x) + f1l1(x) + f2l2(x).

we find the exact expression for the error

f(x)− pn(x) = [x0, . . . , xn, x]f · (x− x0) · · · (x− xn)

(cf. [47, p. 248]). Having such an exact expression for the error (and not just a bound)
has the advantage that it can be used to derive error bounds of more complicated
interpolants built up from polynomial interpolants. In [34], for instance, this expression
was used to bound the error of a rational interpolant made by blending polynomial
interpolants.

1.1.2 Lagrange and barycentric form
of the interpolation polynomial

Besides the Newton form, there is another commonly used representation of the so-
lution to the univariate interpolation problem (1.1). The idea is based upon another
convenient basis of Πn, namely the one with elements

lj(x) =
n∏

i=0
i �=j

x− xi
xj − xi

, j = 0, . . . , n.

As these Lagrange polynomials have the property that lj(xj) = 1 and lj(xi) = 0 for
i �= j, the solution p ∈ Πn to (1.1) can be expressed in the Lagrange form

p(x) = f0l0(x) + f1l1(x) + · · ·+ fnln(x). (1.7)

The basis {l0, l1, . . . , ln} of Πn is called the Lagrange basis associated to the univariate
interpolation problem.

As the coefficients of p in the Lagrange basis are simply the data values of the
interpolation problem, it is trivial to solve the linear system (1.2) in this basis. Clearly,
the costly part in using the Lagrange form is not to find these coefficients. Evaluating
Expression 1.7 naively, on the other hand, will set you back O(n2) floating point
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operations (flops), as opposed to the O(n) flops required for evaluating Equation 1.4
once the divided differences are known. It is known, however, that the Lagrange form
can be altered to a form that can be evaluated in O(n) operations as well [3].

Let l(x) = (x − x0)(x − x1) · · · (x − xn). Then the Lagrange polynomials can be
rewritten as

lj(x) = l(x)
wj

x− xj
, where wj :=

1∏
i �=j

(xj − xi)
, j = 0, 1, . . . , n,

are called the barycentric weights associated to the univariate interpolation problem.
The interpolating polynomial p ∈ Πn satisfying (1.1) can then be brought into barycen-
tric form

p(x) = l(x)
n∑

j=0

wj

x− xj
fj.

After one has computed the barycentric weights w0, w1, . . . , wn, this formula can be
evaluated in O(n) flops. Moreover, after adding a new data point (xn+1, fn+1) to the
interpolation problem, the weights can be updated in O(n) flops by first dividing wj

by xj − xn+1 for j = 0, 1, . . . , n and then computing wn+1 from scratch.

1.2 Multivariate polynomial interpolation

Compared to the field of univariate interpolation theory, which dates back to at least
the 17th century, the field of multivariate interpolation theory is fairly recent. While
initial publications on the topic appeared in the second half of the 19th century [42],
the number of publications has grown substantially with the advent of computers.

Many of the problems encountered in multivariate polynomial interpolation have
no direct analogue in the univariate case, and need to be solved with mathematics
outside of the fields of approximation theory and numerical analysis. This makes the
multivariate case much more complex than the univariate case. One of the issues that
has been attacked from many different angles is the problem of finding configurations
of points for which any interpolation problem has a unique solution in some given
function space.

1.2.1 Configurations of points

As remarked in Section 1.1, the univariate interpolation problem (1.1) has a unique
solution p ∈ Πn as long as the data points x0, x1, . . . , xn are distinct. We proceed to
show that the situation is more complicated in the multivariate setting.

Given m points x1, x2, . . . , xm in R
N and corresponding values f1, f2, . . . , fm in R,

we wish to find a function p that passes through these points, in the sense that

p(xi) = fi, for i = 1, 2, . . . ,m. (1.8)

We shall refer to this as the multivariate interpolation problem. Write X = {x1, x2, . . . ,
xm} and consider any vector space F of functions R

N −→ R. We call X unisolvent
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Figure 1.4: The configuration of points to the left is not unisolvent in Π2
1, as the three

points all lie on a line. The configuration of points to the right, formed by the vertices
of a hexagon, is not unisolvent in Π2

2, as all points lie on a circle.

in F if for any choice of the values f1, f2, . . . , fm there exists a unique function f ∈ F
satisfying (1.8).

Let ΠN
d denote the set of polynomials in N variables with real coefficients and of

total degree at most d. Then ΠN
d forms a vector space of dimension

(
d+N
N

)
. It is natural

to study the case where the number of equationsm matches the dimension of ΠN
d . That

is, when m =
(
d+N
N

)
. The simplest nontrivial case is that of three given data points

(x1, y1), (x2, y2), (x3, y3) in R
2 and corresponding values f1, f2, f3 in R. The vector space

of bivariate polynomials p(x, y) with real coefficients and total degree at most 1 has
dimension 3, and a basis is given by {1, x, y}. Any polynomial p(x, y) = a + bx + cy
satisfies p(xi, yi) = fi for i = 1, 2, 3 if and only if

⎡⎣1 x1 y1
1 x2 y2
1 x3 y3

⎤⎦⎡⎣ab
c

⎤⎦ =

⎡⎣f1f2
f3

⎤⎦ .
The above matrix is singular if and only if the three points (x1, y1), (x2, y2), (x3, y3) are
collinear, in which case there does not exist a unique polynomial p(x, y) = a+ bx+ cy
that interpolates the data as required. Note that this is not surprising: If p(x, y) ∈ Π2

1

is a solution to (1.8) and l(x, y) ∈ Π2
1 is a linear affine polynomial representing the

line through the points (x1, y1), (x2, y2), (x3, y3), then for any α ∈ R the polynomial
p(x, y) + αl(x, y) is a solution to (1.8) as well.

More generally, any finite set X of points in R
N is unisolvent in ΠN

d if and only if

#X = dimΠN
d =

(
N + d

d

)

and X is not contained in an algebraic hypersurface of degree d (see Figure 1.4). Al-
though this condition gives a precise characterization of the configurations of points in
space that are unisolvent in ΠN

d , checking this criterion requires about the same effort
as trying to solve (1.8) directly. It is therefore of interest to find special configurations
of points in space that are unisolvent in some function space and retain other conve-
nient properties from the univariate case. The next two sections introduce two such
configurations.
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1.2.2 Rectangular meshes

The most direct manner to generalize the univariate interpolation problem to the mul-
tivariate setting is by means of rectangular meshes. It seems that these meshes were
first considered in the early 20th century [42,60, 61].

Let us focus on the 2-dimensional case, which simplifies notation and generalizes
readily to the higher-dimensional case. A rectangular mesh X is a Cartesian product

X = {x0, . . . , xm} × {y0, . . . , yn} =
{
(xi, yj) : i = 0, . . . ,m, j = 0, . . . , n

}
, (1.9)

where x0 < x1 < · · · < xm and y0 < y1 < · · · < yn for some m,n ≥ 0. See Figure 1.5a.
For any set of values {fij : i = 0, 1, . . . ,m, j = 0, 1, . . . , n} corresponding to such a
rectangular mesh, the multivariate interpolation problem (1.8) takes on the form

p(xi, yj) = fij, for i = 0, 1, . . . ,m, j = 0, 1, . . . , n. (1.10)

It is natural to look for solutions to (1.10) in the vector space Π2
m,n of bivariate

polynomials p(x, y) with real coefficients and bidegree at most (m,n) (that is, of degree
at mostm in x and of degree at most n in y). Note that the dimension of Π2

m,n coincides
with the number of points inX. The rectangular meshX is sometimes called the tensor
product mesh, because the vector space Π2

m,n is isomorphic to the tensor product of the
vector spaces Π2

m and Π2
n. Because of the linearity of the univariate interpolation

problem and the bilinear nature of the tensor product, many of the constructions for
univariate interpolation problems trivially carry over to constructions on rectangular
meshes.

To illustrate this connection, let be given data points x0 < x1 and y0 < y1 and real
numbers f0, f1, g0, g1. Suppose we are given the two univariate interpolation problems

p(x0) = f0, p(x1) = f1,

q(y0) = g0, q(y1) = g1,

where p(z) = a0 + a1z and q(z) = b0 + b1z are both elements of Π1. In matrix form,
these problems can be written as[

1 x0
1 x1

] [
a0
a1

]
=

[
f0
f1

]
,[

1 y0
1 y1

] [
b0
b1

]
=

[
g0
g1

]
.

Equating the tensor product of the left hand sides with the tensor product of the right
hand sides yields an equation([

1 y0
1 y1

] [
b0
b1

])
⊗

([
1 x0
1 x1

] [
a0
a1

])
=

[
g0
g1

]
⊗

[
f0
f1

]
.

Using the mixed product rule (AC)⊗(BD) = (A⊗B)(C⊗D) to interchange the tensor
product and the matrix product, this equation is equivalent to the system⎡⎢⎢⎣

1 x0 y0 x0y0
1 x1 y0 x1y0
1 x0 y1 x0y1
1 x1 y1 x1y1

⎤⎥⎥⎦
⎡⎢⎢⎣
b0a0
b0a1
b1a0
b1a1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
g0f0
g0f1
g1f0
g1f1

⎤⎥⎥⎦ ,
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Figure 1.5: The figure to the left shows a rectangular mesh as in (1.9) for (m,n) = (2, 1).
The figure to the right shows the zeroset of the Lagrange polynomial l2,1(x, y) as a union
of lines (drawn solid) passing through all points (xi, yj) except (x2, y1).

which represents the bivariate interpolation problem on the rectangular mesh {x0, x1}×
{y0, y1} in Π2

1,1.
Conversely, writing p(x, y) =

∑m
i=0

∑n
j=0 aijx

iyj, the bivariate interpolation prob-
lem on a rectangular mesh from (1.10) can be brought into the matrix form

⎡⎢⎢⎢⎣
1 y0 · · · yn0
1 y1 · · · yn1
...

...
. . .

...
1 yn · · · ynn

⎤⎥⎥⎥⎦⊗

⎡⎢⎢⎢⎣
1 x0 · · · xm0
1 x1 · · · xm1
...

...
. . .

...
1 xm · · · xmm

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a00
a10
...
am0

a01
a11
...

amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f00
f10
...
fm0

f01
f11
...

fmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It can be shown that any tensor product A ⊗ B is singular precisely when A or B
is singular. As the Vandermonde matrices in the above equation are nonsingular, it
follows that the rectangular mesh (1.9) is unisolvent in Π2

m,n.
The Lagrange basis from Section 1.1.2 generalizes to the Lagrange basis of Π2

m,n

with elements

lij(x, y) =
m∏
k=0
k �=i

x− xk
xi − xk

n∏
l=0
l �=j

y − yl
yj − yl

, i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

Each Lagrange polynomial lij(x, y) is of bidegree (m,n) and satisfies lij(xk, yl) = δikδjl
for any i, j, k, l. It follows that the solution p ∈ Π2

m,n to (1.10) can be written in the
Lagrange form

p(x, y) =
m∑
i=0

n∑
j=0

fijlij(x, y).
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Analogously to Equation 1.3, the interpolating polynomial p can be expressed in
terms of the Newton basis{ i−1∏

k=0

(x− xk)

j−1∏
l=0

(y − yl) : i = 0, 1, . . . ,m, j = 0, 1, . . . , n

}
of Π2

m,n (an empty product is considered to be 1), yielding the Newton form

p(x, y) =
m∑
i=0

n∑
j=0

bij

i−1∏
k=0

(x− xk)

j−1∏
l=0

(y − yl).

Let us denote the coefficient bij by [x0, x1, . . . , xi; y0, y1, . . . , yj]f and refer to it as the
(bivariate) divided difference of order (i, j). It can be shown (see [47, Section 6.6])
that these coefficients can be obtained recursively as follows. For i = j = 0 one sets
[x0; y0]f = f00. If i > 0 one defines

[x0, . . . , xi; y0, . . . , yj]f :=
[x1, . . . , xi; y0, . . . , yj]f − [x0, . . . , xi−1; y0, . . . , yj]f

xi − x0
,

and if j > 0 one defines

[x0, . . . , xi; y0, . . . , yj]f :=
[x0, . . . , xi; y1, . . . , yj]f − [x0, . . . , xi; y0, . . . , yj−1]f

yj − y0
.

If both i > 0 and j > 0, the divided difference [x0, . . . , xi; y0, . . . , yj]f is uniquely
defined by either recursion formula.

For a given bivariate function f , let p ∈ Π2
m,n be the polynomial interpolating f at

the rectangular mesh (1.9). From [47, Section 6.5], we have the exact expression

f(x, y)− p(x, y) = [x0, . . . , xm, x; y]f
m∏
i=0

(x− xi) + [x; y0, . . . , yn, y]f
n∏

j=0

(y − yj)

−[x0, . . . , xm, x; y0, . . . , yn, y]f
m∏
i=0

(x− xi)
n∏

j=0

(y − yj)

for the error in the point (x, y).
Divided differences of functions with more than two variables are defined similarly.

Let y(x1, . . . , xN) be a function that is implicitly defined by a function g : RN+1 −→ R

via the relations

g
(
x1, . . . , xN , y(x1, . . . , xN)

)
= 0,

∂g

∂y

(
x1, . . . , xN , y(x1, . . . , xN)

)
�= 0

that hold in some domain in R
N . In the paper of Chapter 3, we find a formula that

expresses the divided differences of y in terms of the divided differences of g, which is a
generalization of the paper of Chapter 2. Moreover, letting the points in the rectangular
grid coalesce to a single point, we find a formula that expresses the derivatives of y (of
any order) in terms of the derivatives of g.
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1.2.3 Geometric characterization

In this section we discuss a characterization of meshes in R
N for which the interpolant

in ΠN
d can be brought into a form similar to the Lagrange form.
Let us generalize the notion of a Lagrange form. Consider the ordered set of data

points X = {x1, . . . , xm} ⊂ R
N with m =

(
N+d
d

)
for some nonnegative integer d. A

polynomial l ∈ ΠN
d is called a Lagrange polynomial associated to x ∈ X if l(x) = 1

and l(y) = 0 for any y ∈ X\{x}. An ordered basis {l1, . . . , lm} of ΠN
d is called a

Lagrange basis for X, if li(xj) = δij for 1 ≤ i, j ≤ m. If, in addition, each Lagrange
polynomial splits into a product of real linear factors, we call {l1, . . . , lm} a simple
Lagrange basis for X. Whenever one has a Lagrange basis for X, the multivariate
interpolation problem (1.8) admits a unique solution

p(x) =
m∑
i=1

fili(x) ∈ ΠN
d .

In [24], Chung and Yao formulated these ideas in a geometric manner.

Definition 2. As above, let X = {x1, . . . , xm} ⊂ R
N with m =

(
N+d
d

)
for some

nonnegative integer d. Then X is said to satisfy the geometric characterization, if
for each data point xi there exist d distinct hyperplanes Hij : hij(x) = 0, with j =
1, 2, . . . , d, such that

(i) xi does not lie on any of these hyperplanes, and

(ii) all other data points in X\{xi} lie on at least one of these hyperplanes.

Let X = {x1, . . . , xm} be a set satisfying the geometric characterization with cor-
responding hyperplanes Hij : hij(x) = 0, with j = 1, . . . , d, associated to each xi ∈ X.
For any xi ∈ X, the polynomial

li(x) =
d∏

j=1

hij(x)

hij(xi)

is a Lagrange polynomial associated to xi ∈ X, and the collection {l1, . . . , lm} forms a
simple Lagrange basis for X. It follows that there exists a simple Lagrange basis for
any set X satisfying the geometric characterization. Conversely, if a set X admits a
simple Lagrange basis of ΠN

d , it will satisfy the geometric characterization [24, Theorem
1].

As a first example, suppose we are given N + d hyperplanes H1, H2, . . . , HN+d ⊂
R

N , any N of which intersect in precisely one point. If all of these
(
N+d
N

)
points are

distinct, we call the set X of these points a natural lattice (see Figure 1.6a for an
example in the plane). Any natural lattice satisfies the geometric characterization
[24, Theorem 3]. Another example is formed by the generalized principal lattices,
of which the triangular meshes form are the simplest cases, see Figure 1.6b. Any
generalized principal lattice is formed by intersecting collections of hyperplanes in a
manner very similar to how a triangular mesh is formed by intersecting collections of
hyperplanes. A precise definition of generalized principal lattices in the plane will be
given in Section 4.1 and a general definition in Section 4.4.1.
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(a) (b)

Figure 1.6: To the left: A natural lattice corresponding to 2+3 lines in R
2 that intersect

generically. To the right: A triangular mesh.

Although the geometric characterization is a beautiful way to look at Lagrange
interpolation, it does not show us how all such meshes can be constructed. Moreover,
their incidence structures are not well understood [7], as is shown by the following
conjecture, made in [41].

Conjecture 3 (Gasca, Maeztu). Let X = {x1, x2, . . . , xm} ⊂ R
2, with m =

(
d+2
2

)
,

satisfy the geometric characterization with lines Li1, . . . , Lid associated to xi for i =
1, 2, . . . ,m. Then one of these lines contains d+ 1 points of X.

Despite the simple nature of this statement, it has shown difficult to prove. It is
only known to be true for d ≤ 4 [9,11], and the complexity of the proofs increases with
the degree d.

To gain better insight into the incidence structures of meshes satisfying the geomet-
ric characterization, Carnicer, Gasca, and Godes set out to classify the meshes in the
plane that satisfy the geometric characterization according to their defect [12,19,21,22].
Note that each of the d+2 lines in Figure 1.6a passes through d+1 points of X. Car-
nicer and Gasca refer to the natural lattices in the plane as meshes with defect 0 (called
default in [12]), as these represent the generic case of d + 2 lines intersecting in the
plane. More generally, let X ⊂ R

2 be a configuration of points satisfying the geometric
characterization for which there are precisely k lines passing through d + 1 points of
X. Such a set is said to have defect d+ 2− k.

In [13, Theorem 4.1], it is shown that if Conjecture 3 holds for all degrees d up to
some D, then, for any set X ⊂ R

2 satisfying the geometric characterization and with
#X =

(
d′+2
2

)
elements for some d′ ≤ D, there are at least three such lines with d + 1

points of X. This would imply that the defect can be at most d− 1. Note that for the
triangular mesh in Figure 1.6b only three of the lines contain d + 1 points of X. In
this sense, the natural lattices and the generalized principal lattices represent opposite
ends in the classification of Carnicer and Gasca (compare [18, Theorem 3.6]). This
makes studying generalized principal lattices a worthy goal.

In Section 4.1–4.3, we show how generalized principal lattices are a natural general-
ization of triangular meshes and exhibit in detail a classification of generalized principal
lattices in the plane by Carnicer and Gasca [15,16]. The final section of Chapter 4 stud-
ies generalized principal lattices in higher-dimensional space, which were introduced by
Carnicer, Gasca, and Sauer in [17]. Each generalized principal lattice constructed in
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this article corresponds to a parameterized curve. After converting these curves to im-
plicit form, we realized that these are all real algebraic curves in P

n of degree n+1 and
arithmetic genus 1. Moreover, for n = 3 these curves can be conceived very concretely
as the complete intersection of two quadric surfaces. With the help of a technical tool
introduced in [17], it is shown in Sections 4.4.5 – 4.4.9 that all curves of this type can
be used to define a generalized principal lattice in 3-dimensional projective space. The
resulting classification is summarized in Table 4.4.
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Abstract

Under general conditions, the equation g(x, y) = 0 implicitly defines y locally as
a function of x. In this article, we express divided differences of y in terms of bi-
variate divided differences of g, generalizing a recent result on divided differences
of inverse functions.

2.1 Introduction

Divided differences can be viewed as a discrete analogue of derivatives and are com-
monly used in approximation theory, see [6] for a survey.

Recently, the second author and Lyche established two univariate chain rules for
divided differences [35], both of which can be viewed as analogous to Faà di Bruno’s
formula for differentiating composite functions [31, 48]. One of these formulas was
simultaneously discovered by Wang and Xu [85]. In a follow-up preprint, the other
chain rule was generalized to the composition of vector-valued functions of several
variables [33], yielding a formula analogous to a multivariate version of Faà di Bruno’s
formula [27].

In [36], the univariate chain rule was applied to find a formula for divided differences
of the inverse of a function. In Theorem 4, the Main Theorem of this paper, we use the
multivariate chain rule to prove a similar formula for divided differences of implicitly
defined functions. Equation 2.16 shows that the formula for divided differences of
inverse functions in [36] follows as a special case.

More precisely, let y be a function that is defined implicitly by a function g : R2 → R

via g
(
x, y(x)

)
= 0 and ∂g

∂y

(
x, y(x)

)
�= 0, for every x in an open interval U ⊂ R. Then

15
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the Main Theorem states that for any

x0, . . . , xn ∈ U, y0 := y(x0), . . . , yn := y(xn) ∈ y(U)

we can express [x0, . . . , xn]y as a sum of terms involving the divided differences

[xi0 , . . . , xis ; yis , . . . yir ]g,

with 0 ≤ i0 < i1 < · · · < ir ≤ n.
In Section 3.2, we define these divided differences and explain our notation. In

Section 3.3, we apply the multivariate chain rule to derive a formula that recursively
expresses divided differences of y in terms of divided differences of g and lower order
divided differences of y. Finally, in Section 2.4, we solve this recursive formula to obtain
a formula that expresses divided differences of y solely in terms of divided differences
of g. We end the section with applying the Main Theorem in some special cases.

2.2 Divided differences

Let [x0, . . . , xn]f denote the divided difference of a function f : (a, b) → R at the points
x0, . . . , xn, with a < x0 ≤ · · · ≤ xn < b. If all inequalities are strict, this notion is
recursively defined by [x0]f := f(x0) and

[x0, . . . , xn]f =
[x1, . . . , xn]f − [x0, . . . , xn−1]f

xn − x0
if n > 0.

If some of the {xi} coincide, we define [x0, . . . , xn]f as the limit of this formula when
the distances between these {xi} become arbitrary small, provided f is sufficiently
smooth there. In particular, when x0 = · · · = xn, one can show that [x0, . . . , xn]f =
f (n)(x0)/n! . For given i0, . . . , ik satisfying i0 ≤ i1 ≤ · · · ≤ ik, we shall sometimes
shorten notation to

[i0i1 · · · ik]f := [xi0 , xi1 , . . . xik ]f. (2.1)

The above definitions generalize to bivariate divided differences as follows. Let
f : U → R be defined on some 2-dimensional interval

U = (a1, b1)× (a2, b2) ⊂ R
2.

Suppose we are givenm,n ≥ 0 and points x0, . . . , xm ∈ (a1, b1) satisfying x0 < · · · < xm
and y0, . . . , ym ∈ (a2, b2) satisfying y0 < · · · < ym. The Cartesian product

{x0, . . . , xm} × {y0, . . . , yn}

defines a rectangular grid of points in U . The (bivariate) divided difference of f at this
grid, denoted by

[x0, . . . , xm; y0, . . . , yn]f, (2.2)
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can be defined recursively as follows. If m = n = 0, the grid consists of only one point
(x0, y0), and we define [x0; y0]f := f(x0, y0) as the value of f at this point. In case
m > 0, we can define (2.2) as

[x1, . . . , xm; y0, . . . , yn]f − [x0, . . . , xm−1; y0, . . . , yn]f

xm − x0
,

or if n > 0, as

[x0, . . . , xm; y1, . . . , yn]f − [x0, . . . , xm; y0, . . . , yn−1]f

yn − y0
.

If both m > 0 and n > 0 the divided difference (2.2) is uniquely defined by either
recursion formula.

As for univariate divided differences, we can let some of the points coalesce by
taking limits, as long as f is sufficiently smooth. In particular when x0 = · · · = xm
and y0 = · · · = yn, this legitimates the notation

[x0, . . . , xm; y0, . . . , yn]f :=
1

m!n!

∂m+nf

∂xm∂yn
(x0, y0).

Similarly to Equation 2.1, we shall more often than not shorten the notation for
bivariate divided differences to

[i0i1 · · · is; j0j1 · · · jt]f := [xi0 , xi1 , . . . , xis ; yj0 , yj1 , . . . , yjt ]f. (2.3)

2.3 A recursive formula for implicit functions

Let y be a function implicitly defined by g
(
x, y(x)

)
= 0 as in Section 3.1. The first step

in expressing divided differences of y in terms of those of g is to express those of g in
terms of those of y. This link is provided by a special case of the the multivariate chain

rule of [33]. Let R
f−→ R

2 g−→ R be a composition of sufficiently smooth functions
f = (φ, ψ) and g. In this case, the formula of [33] for n ≥ 1 is

[x0, x1, . . . , xn](g ◦ f) =
n∑

k=1

∑
0=i0<i1<···<ik=n

k∑
s=0

(2.4)

[φ(xi0), φ(xi1), . . . , φ(xis);ψ(xis), ψ(xis+1), . . . , ψ(xik)]g×
s∏

l=1

[xil−1
, xil−1+1, . . . , xil ]φ

k∏
l=s+1

[xil−1
, xil−1+1, . . . , xil ]ψ.

Now we choose f to be the graph of a function y, i.e., f : x �→
(
φ(x), ψ(x)

)
=

(
x, y(x)

)
.

Then the divided differences of φ of order greater than one are zero, implying that the
summand is zero unless (i0, i1, . . . , is) = (0, 1, . . . , s); below this condition is realized
by restricting the third sum in Equation 2.4 to integers s that satisfy s = is− i0. Since
additionally divided differences of φ of order one are one, we obtain

[x0, x1, . . . , xn]g
(
·, y(·)

)
=

n∑
k=1

∑
0=i0<i1<···<ik=n

k∑
s=0

s=is−i0

(2.5)
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[x0, x1, . . . , xs; yis , yis+1 , . . . , yik ]g
k∏

l=s+1

[xil−1
, xil−1+1, . . . , xil ]y,

where yj := y(xj) for j = 0, 1, . . . , n. For example, when n = 1 this formula becomes

[x0, x1]g
(
·, y(·)

)
=

[x0; y0, y1]g [x0, x1]y + (k, s) = (1, 0)

[x0, x1; y1]g, (k, s) = (1, 1)

and when n = 2,

[x0, x1, x2]g
(
·, y(·)

)
=

[x0; y0, y2]g [x0, x1, x2]y + (k, s) = (1, 0)

[x0; y0, y1, y2]g [x0, x1]y [x1, x2]y + (k, s) = (2, 0)

[x0, x1; y1, y2]g [x1, x2]y + (k, s) = (2, 1)

[x0, x1, x2; y2]g. (k, s) = (2, 2)

In case y is implicitly defined by g
(
x, y(x)

)
= 0, the left hand side of Equation 2.5

is zero. In the case n = 1, therefore, we see that

[01]y = − [01; 1]g

[0; 01]g
, (2.6)

where we now used the shorthand notation from Equations 2.1 and 3.6. For n ≥ 2,
the highest order divided difference of y present in the right hand side of Equation
2.5 appears in the term [0; 0n]g [01 · · ·n]y. Moving this term to the left hand side and
dividing by −[0; 0n]g, one finds a formula that expresses [01 · · ·n]y recursively in terms
of lower order divided differences of y and divided differences of g,

[01 · · ·n]y = −
n∑

k=2

∑
0=i0<···<ik=n

k∑
s=0

s=is−i0

(2.7)

[01 · · · s; isis+1 · · · ik]g
[0; 0n]g

k∏
l=s+1

[il−1(il−1 + 1) · · · il]y.

We shall now simplify Equation 2.7. By Equation 2.6, the first order divided dif-
ferences of y appearing in the product of Equation 2.7 can be expressed as quotients
of divided differences of g. To separate, for every sequence (i0, i1, . . . , ik) appearing
in Equation 2.7, the divided differences of g from those of y, we define an expression
involving only divided differences of g,

{i0 · · · ik}g := −
k∑

s=0
s=is−i0

[i0 · · · is; is · · · ik]g
[i0; i0ik]g

k∏
l=s+1

il−il−1=1

(
− [il−1il; il]g

[il−1; il−1il]g

)
. (2.8)
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Note that if a sequence (i0, . . . , ik) starts with precisely s consecutive integers, the
expression {i0 · · · ik}g will comprise s terms. For instance,

{023}g = [0; 023]g

[0; 03]g

[23; 3]g

[2; 23]g
,

{013}g = [0; 013]g

[0; 03]g

[01; 1]g

[0; 01]g
− [01; 13]g

[0; 03]g
,

{012}g = − [0; 012]g

[0; 02]g

[01; 1]g

[0; 01]g

[12; 2]g

[1; 12]g
+

[01; 12]g

[0; 02]g

[12; 2]g

[1; 12]g
− [012; 2]g

[0; 02]g
.

The remaining divided differences [il−1 · · · il]y in the product of Equation 2.7 are
those with il − il−1 ≥ 2, and each of these comes after any s satisfying s = is − i0.
We might therefore as well start the product of these remaining divided differences at
l = 1 instead of at l = s + 1, which has the advantage of making it independent of s.
Equation 2.7 can thus be rewritten as

[0 · · ·n]y =
n∑

k=2

∑
0=i0<···<ik=n

{i0 · · · ik}g
k∏

l=1
il−il−1≥2

[il−1 · · · il]y. (2.7′)

For n = 2, 3, 4 this expression amounts to

[012]y = {012}g, (2.9)

[0123]y = {0123}g + {023}g [012]y + {013}g [123]y, (2.10)

[01234]y = {01234}g + {0134}g [123]y + {034}g [0123]y (2.11)

+ {0124}g [234]y + {0234}g [012]y + {014}g [1234]y
+ {024}g [012]y [234]y.

2.4 A formula for divided differences of implicit

functions

In this section we shall solve the recursive formula from Equation 2.7′. Repeatedly
applying Equation 2.7′ to itself yields

[012]y = {012}g, (2.12)

[0123]y = {0123}g + {023}g {012}g + {013}g {123}g, (2.13)

[01234]y = {01234}g + {0134}g {123}g + {034}g {013}g {123}g (2.14)

+ {034}g {0123}g + {034}g {023}g {012}g + {0124}g {234}g
+ {0234}g {012}g + {014}g {134}g {123}g + {014}g {1234}g
+ {014}g {124}g {234}g + {024}g {012}g {234}g.

Examining these examples, one finds that each term in the right hand sides of the
above formulas corresponds to a partition of a convex polygon in a manner we shall
now make precise.
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With a sequence of labels 0, 1, . . . , n we associate the ordered vertices of a convex
polygon. A partition of a convex polygon is the result of connecting any pairs of
nonadjacent vertices with straight line segments, none of which intersect. We refer
to these line segments as the inner edges of the partition. We denote the set of all
such partitions of a polygon with vertices 0, 1, . . . , n by P(0, 1, . . . , n). Every partition
π ∈ P(0, 1, . . . , n) is described by its set F (π) of (oriented) faces. Each face f ∈ F (π)
is defined by some increasing sequence of vertices i0, i1, . . . , ik of the polygon, i.e.,
f = (i0, i1, . . . , ik). We denote the set of edges in π by E(π).

Let y be a function implicitly defined by g
(
x, y(x)

)
= 0 and (x0, y0), . . . , (xn, yn)

be as in Section 3.1. Equations 2.12–2.14 suggest the following theorem.

Theorem 4 (Main Theorem). For y and g defined as above and sufficiently smooth
and for n ≥ 2,

[0 · · ·n]y =
∑

π∈P(0,...,n)

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g, (2.15)

where {v0 · · · vr}g is defined by Equation 2.8.

Before we proceed with the proof of this theorem, we make some remarks. For n =
2, 3, 4 this theorem reduces to the statements of Equations 2.12–2.14. To prove Theorem
4, our plan is to use Equation 2.7′ recursively to express [01 · · ·n]y solely in terms of
divided differences of g. We have found it helpful to assign some visual meaning to
Equation 2.7′. Every sequence i = (i0, i1, . . . , ik) that appears in Equation 2.7′ induces
a partition πi ∈ P(0, 1, . . . , n) whose set of faces comprises an inner face (i0, i1, . . . , ik)
and outer faces (ij, ij + 1, . . . , ij+1) for every j = 0, . . . , k − 1 with ij+1 − ij ≥ 2. We
denote by Pi the set of all partitions of the disjoint union of these outer faces. An
example of such a sequence i, together with its inner face, outer faces, and partition
set Pi is given in Figure 2.1.

We shall now associate divided differences to these geometric objects. To each outer
face (ij, ij + 1, . . . , ij+1) we associate the divided difference [ij(ij + 1) · · · ij+1]y, and to
each inner face (i0, i1, . . . , ik) we associate the expression {i0 · · · ik}g. For any sequence
i that appears in the sum of Equation 2.7′, the corresponding inner face therefore
represents that part of Equation 2.7′ that can be written solely in terms of divided
differences of g, while the outer faces represent the part that is still expressed as a
divided difference of y.

Repeatedly applying Equation 2.7′ yields a recursion tree, in which each node rep-
resents a product of divided difference expressions associated to inner and outer faces.
These recursion trees are depicted in Figure 2.2 for n = 2, 3, 4. Equation 2.7′ roughly
states that the expression of any nonleaf vertex is equal to the sum of the expressions
of its descendants.

Proof of the Main Theorem. This theorem is a generalization of Theorem 1 in [36], and
the proofs are analogous. We prove the formula by induction on the order n of the
divided difference of y.

By the above discussion, the formula holds for n = 2, 3, 4. For n ≥ 5, assume the
formula holds for all smaller n. Consider the recursive formula from Equation 2.7′.
For every sequence i that appears in this equation, the corresponding outer faces have
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0=i
0

1=i
1

2=i
2

3 4=i
3

5=i
4

6

7=i
5

Figure 2.1: For n = 7, the sequence i = (0, 1, 2, 4, 5, 7) gives rise to the two outer faces
(2, 3, 4) and (5, 6, 7), which are drawn shaded in the figure. The set Pi contains in this
case just 1 × 1 = 1 partition, namely the union of the unique partitions {(2, 3, 4)} and
{(5, 6, 7)} of the outer faces.
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Figure 2.2: For n = 2, 3, 4, the figure depicts the recursion trees obtained by repeatedly
applying Equation 2.7′. The top levels of these recursion trees correspond to Equations
2.9–2.11.



22 CHAPTER 2. DIV. DIFF. OF UNIVARIATE IMPLICIT FUNCTIONS

fewer vertices than the full polygon. By the induction hypothesis, we can therefore
replace each divided difference [il · · · il+1]y appearing in the product of Equation 2.7′

by an expression involving only divided differences of g.
As before, let Pi denote the set of all partitions of the disjoint union of the outer

faces induced by i. Then, by the induction hypothesis, the product in Equation 2.7′ is
equal to∑

π∈Pi

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g.

For a given inner face i, the set Pi can be identified with {π ∈ P(0, . . . , n) : i ∈ F (π)}
by the bijection F (π) �→ F (π) ∪ {i}. Substituting the above expression into Equation
2.7′ then yields

[0 · · ·n]y =
∑

inner faces
i=(i0,...,ik)

{i0 · · · ik}g
∑
π∈Pi

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g

=
∑

inner faces
i=(i0,...,ik)

∑
π∈P(0,...,n)

i∈F (π)

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g

=
∑

π∈P(0,...,n)

∏
(v0,...,vr)∈F (π)

{v0 · · · vr}g.

Intuitively, this proof can be expressed in terms of the recursion tree as follows. As
remarked in the previous section, Equation 2.7′ states that the expression of any nonleaf
vertex is equal to the sum of the expressions of its descendants. By induction, the
expression [01 · · ·n]y of the root vertex is therefore equal to the sum of the expressions
of the leaves, which, by construction, correspond to partitions of the full polygon.

Example 1. Let us apply Theorem 4 to find a simple expression for divided differences
of the function y(x) =

√
1− x2 defined on the interval (−1, 1). This function is implic-

itly defined by the polynomial g(x, y) = x2 + y2 − 1 = 0. For any knots xa, xb, xc, xd
satisfying −1 < xa ≤ xb ≤ xc ≤ xd < 1 and corresponding function values ya, yb, yc, yd,
one finds

[xa, xb; yc]g = xa + xb, [xa, xb, xc; yd]g = 1,

[xa; yb, yc]g = yb + yc, [xa; yb, yc, yd]g = 1,

and all other divided differences of g of nonzero order are zero. In particular, every
divided difference of g of total order at least three is zero, which means that the sum
in Equation 2.15 will only be over triangulations (i.e., partitions in which all faces are
triangles). For a polygon with vertices 0, 1, . . . , n, Exercise 6.19a of [?Stanley2] states
that the number of such triangulations is given by the Catalan number

C(n− 1) =
1

n

(
2n− 2

n− 1

)
.

Consider, for a given triangulation π ∈ P(0, 1, . . . , n), a face (a, b, c) ∈ F (π) from
the product in Equation 2.15. As any divided difference of the form [xa, xb; yb, yc]g is
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zero for this g, Equation 2.8 expresses {abc}g as a sum of at most two terms. There
are four cases.

{abc}g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

ya + yc

[
1 +

xa + xb
ya + yb

· xb + xc
yb + yc

]
a, b, c consecutive;

1

ya + yc
· xa + xb
ya + yb

only a, b consecutive;

1

ya + yc
· xb + xc
yb + yc

only b, c consecutive;

−1

ya + yc
otherwise.

For example, when n = 3, our convex polygon is a quadrilateral, which admits C(3−
1) = 2 triangulations π1 and π2 with sets of faces

F (π1) = {(0, 1, 2), (0, 2, 3)}, F (π2) = {(0, 1, 3), (1, 2, 3)}.

One finds

[x0, x1, x2, x3]
√
1− x2 = {012}g {023}g + {013}g {123}g =

−1

(y0 + y3)(y0 + y2)

[
1 +

x0 + x1
y0 + y1

· x1 + x2
y1 + y2

]
· x2 + x3
y2 + y3

+

−1

(y0 + y3)(y1 + y3)

[
1 +

x1 + x2
y1 + y2

· x2 + x3
y2 + y3

]
· x0 + x1
y0 + y1

.

Example 2. Next we show that Theorem 4 is a generalization of Theorem 1 of [36],
which gives a similar formula for inverse functions. To see this, we apply Theorem
4 to a function y implicitly defined by a function g(x, y) = x − h(y). Referring to
Equation 2.8, we need to compute [i0 · · · is; is · · · ik]g for this choice of g and various
indices i0, . . . , ik and s ∈ {0, . . . , k}. Applying the recursive definition of bivariate
divided differences, one obtains

[i0 · · · is; is · · · ik]x =

⎧⎨⎩
xi0 if s = 0, s = k;
1 if s = 1, s = k;
0 otherwise,

[i0 · · · is; is · · · ik]h(y) =
{

[is · · · ik]h if s = 0;
0 otherwise.

Consider a face f = (v0, . . . , vr) of a given partition π ∈ P(0, . . . , n) in Equation
2.15. Since r ≥ 2, the divided difference [v0 · · · vs; vs · · · vr]

(
x− h(y)

)
is zero for s ≥ 1.

Using this, Equation 2.8 expresses {v0 · · · vr}g as a single term

{v0 · · · vr}g =− [v0; v0 · · · vr]g
[v0; v0vr]g

r∏
l=1

vl−vl−1=1

(
− [vl−1vl; vl]g

[vl−1; vl−1vl]g

)

=− [v0 · · · vr]h
[v0vr]h

r∏
l=1

vl−vl−1=1

1

[vl−1vl]h
.
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Taking the product over all faces in the partition π, the denominators of the factors
in the above equation correspond to the edges of the partition, while the numerators
correspond to the faces of the partition. As there is a minus sign for each face in the
partition, we arrive at the formula

[01 · · ·n]y =
∑

π∈P(0,...,n)

(−1)#F (π)

∏
(v0,...,vr)∈F (π)

[v0v1 · · · vr]h∏
(v0,v1)∈E(π)

[v0v1]h
, (2.16)

which appears as Equation 11 in [36].

Note that the inverse of the algebraic function y =
√
1− x2 in Example 1 is again

an algebraic function. Equation 2.16 would therefore not have been of much help to
find a simple expression for divided differences of y. In fact, Example 1 can be thought
of as one of the simplest examples for which Theorem 4 improves on Equation 2.16, as
it concerns a polynomial g with bidegree as low as (2,2).

Example 3. In this example we shall derive a quotient rule for divided differences.
That is, we shall find a formula that expresses divided differences of the quotient y =
P (x)/Q(x) in terms of divided differences of P and of Q. Let g(x, y) = Q(x)y − P (x).
Then, in Equation 2.8,

[i0 · · · is; is · · · ik]g =

⎧⎨⎩
yis [i0 · · · is]Q− [i0 · · · is]P if s = k;

[i0 · · · is]Q if s = k − 1;
0 otherwise.

(2.17)

In Equation 2.15, therefore, the only partitions with a nonzero contribution are
those whose faces have all their vertices consecutive, except possibly the final one. In
particular, the inner face with vertices 0 = i0 < · · · < ik = n should either be the full
polygon, or should have a unique inner edge (ik−1, n). By induction, it follows that the
partitions with a nonzero contribution to Equation 2.15 are precisely those for which
all inner edges end at n. These partitions correspond to subsets I ⊂ {1, 2, . . . , n− 2},
including the empty set, by associating with any such I the partition with inner edges
{(i, n) : i ∈ I}. Equation 2.15 becomes

[0 · · ·n]P
Q

= {0 · · ·n}g+ (2.18)

n−2∑
r=1

r∑
k=1

∑
0=i0<i1<···<ik=r

{r · · ·n}g
k∏

j=1

{ij−1 · · · ijn}g,

where the dots represent consecutive nodes and an empty product is understood to be
one. A long but straightforward calculation involving Equations 2.8, 2.17, and 2.18
yields

[0 · · ·n]P
Q

=
[0 · · ·n]P

Q0

+

n∑
r=1

[r · · ·n]P
Qr

r∑
k=1

(−1)k
∑

0=i0<i1<···<ik=r

k∏
j=1

[ij−1 · · · ij]Q
Qij−1

,
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where Qi := Q(xi) for i = 0, . . . , n. Alternatively, this equation can be found by
applying a univariate chain rule to the composition x �→ Q(x) �→ 1/Q(x), as described
in Section 4 of [35].

Finally, we note that taking the limit x0, . . . , xn → x in Equations 2.6, 2.8, 2.12,
and 2.13 yields

y′(x) =− g10
g01

,

y′′(x) =− g20
g01

+ 2
g11g10
g201

− g02g
2
10

g301
,

y′′′(x) =− g30
g01

+ 3
g21g10
g201

+ 3
g20g11
g201

− 3
g20g10g02
g301

− 3
g12g

2
10

g301

− 6
g211g10
g301

+
g310g03
g401

+ 9
g11g

2
10g02
g401

− 3
g310g

2
02

g501
,

where we introduced the shorthand

gst :=
∂s+tg

∂xs∂yt
(
x, y(x)

)
.

These formulas agree with the examples given in [26], [25, Page 153] and with a formula
stated as Equation 7 in [87].
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Paper 2: Divided Differences

of Multivariate Implicit Functions

Georg Muntingh

Abstract

Under general conditions, the equation g(x1, . . . , xq, y) = 0 implicitly defines y
locally as a function of x1, . . . , xq. In this article, we express divided differences
of y in terms of divided differences of g, generalizing a recent formula for the case
where y is univariate. The formula involves a sum over a combinatorial structure
whose elements can be viewed either as polygonal partitions or as planar trees.
Through this connection, we prove as a corollary a formula for derivatives of y in
terms of derivatives of g. The relation between these formulas yields a generating
function for the number of terms in the formula for divided differences of implicit
functions.

3.1 Introduction

Divided differences can be viewed as a discrete analogue of derivatives and are com-
monly used in approximation theory, see [6] for a survey.

Recently, Floater and Lyche introduced a multivariate chain rule for divided differ-
ences [33], analogous to a multivariate form of Faá di Bruno’s formula for derivatives
[27, 31, 48]. In Theorem 1 in [56], this chain rule was applied to find an expression for
divided differences of univariate implicit functions, thereby generalizing a formula by
Floater and Lyche for divided differences of the inverse of a function [36].

In Theorem 5, the Main Theorem of this paper, we generalize Theorem 1 in [56]
to divided differences of multivariate implicit functions. More precisely, for some open
box U ⊂ R

q and open interval V ⊂ R, let y : U −→ V be a function that is implicitly
defined by a function g : U × V −→ R via

g
(
x, y(x)

)
= 0,

∂g

∂y

(
x, y(x)

)
�= 0 ∀ x ∈ U. (3.1)

27
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Then the Main Theorem states that, for any rectangular grid{
x10, . . . , x

1
n1

}
× · · · ×

{
xq0, . . . , x

q
nq

}
⊂ U,

we can express the divided difference [x10, . . . , x
1
n1
; · · · ; xq0, . . . , xqnq

]y as a sum of terms
involving the divided differences of g.

In the next section, we define these divided differences and explain our notation. In
Section 3.3, we apply the multivariate chain rule to derive a formula that recursively
expresses divided differences of y in terms of divided differences of g and lower-order
divided differences of y. This recursive formula is solved in Section 3.4, yielding a
formula that expresses divided differences of y solely in terms of divided differences of
g. This formula is stated in the Main Theorem as a sum over polygonal partitions.
It is shown in Section 3.5, that such polygonal partitions correspond to planar trees
of a certain type, giving rise to an alternative form of the Main Theorem. Switching
between these combinatorial structures, we are able to prove as a special case in Section
3.6 a generalization of a formula by Comtet, Fiolet, and Wilde for the derivatives of y
in terms of the derivatives of g. In the final section, this connection is used to find a
generating function for the number of terms appearing in the Main Theorem.

3.2 Divided differences

Consider a function y : U −→ R defined on some open box

U = (a1, b1)× · · · × (aq, bq) ⊂ R
q. (3.2)

Suppose that, for some integers n1, . . . , nq ≥ 0 and all j = 1, . . . , q, we are given points
xj0, . . . , x

j
nj

∈ (aj, bj) satisfying aj < xj0 < · · · < xjnj
< bj. The Cartesian product{

x10, . . . , x
1
n1

}
× · · · ×

{
xq0, . . . , x

q
nq

}
(3.3)

defines a rectangular grid of points in U . The divided difference of y at this grid,
denoted by[

x10, . . . , x
1
n1
; · · · ; xq0, . . . , xqnq

]
y, (3.4)

can be defined recursively as follows. If n1 = · · · = nq = 0, the grid consists of only
one point (x10, . . . , x

q
0), and we define

[
x10; · · · ; xq0

]
y := y(x10, . . . , x

q
0) as the value of y at

this point. In case nj > 0 for some 1 ≤ j ≤ q, we can define (3.4) recursively by

(xjnj
− xj0)

[
x10, . . . , x

1
n1
; · · · ; xq0, . . . , xqnq

]
y = (3.5)[

x10, . . . , x
1
n1
; · · · ; x̂j0, xj1, . . . , xjnj−1, x

j
nj
; · · · ; xq0, . . . , xqnq

]
y−[

x10, . . . , x
1
n1
; · · · ; xj0, xj1, . . . , xjnj−1, x̂

j
nj ; · · · ; xq0, . . . , xqnq

]
y,

where the hat signifies omission of a symbol. If several of the nj are greater than
zero, the divided difference (3.4) is uniquely defined by any of these recursive formulas.
We refer to the size of the grid (n1, . . . , nq) as the order of the divided difference in
Equation 3.4.
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For any a = (a1, . . . , aq),b = (b1, . . . , bq) ∈ N
q, write a ≤ b whenever aj ≤ bj for

every 1 ≤ j ≤ q. Additionally, we write a < b whenever a ≤ b and a �= b. In this
manner, the symbol ≤ defines a partial order on R

q. We use the notation

[x : a,b]y :=
[
x1a1 , x

1
a1+1, . . . , x

1
b1
; · · · ; xqaq , x

q
aq+1, . . . , x

q
bq

]
y

for the divided difference of y with respect to the grid of all points with indices “between
a and b”.

Divided differences of the function g : U × V −→ R in Equation 3.1 are defined
similarly. For these functions, however, we stress the distinction between the variables
x1, . . . , xq and the variable y by replacing the final semi-colon by a bar in our notation.

As the notation of Equation 3.4 quickly grows cumbersome, we shall more often
than not shorten the notation for divided differences to one that involves just the
indices,[

i1,0 · · · i1,s1 ; · · · ; iq,0 · · · iq,sq
]
y :=

[
x1i1,0 , . . . , x

1
i1,s1

; · · · ; xqiq,0 , . . . , x
q
iq,sq

]
y, (3.6)[

i1,0 · · · i1,s1 ; · · · ; iq,0 · · · iq,sq
∣∣j0 · · · jt]g := (3.7)[

x1i1,0 , . . . , x
1
i1,s1

; · · · ; xqiq,0 , . . . , x
q
iq,sq

∣∣yj0 , . . . , yjt]g.
We can let some of the points coalesce by taking limits, as long as y is sufficiently

smooth. In particular, letting all points in the grid coalesce to a single point x0 =
(x10, . . . , x

q
0) yields, for any tuple n = (n1, . . . , nq) ∈ N

q, the notation[
x10, . . . , x

1
0︸ ︷︷ ︸

n1+1

; · · · ; xq0, . . . , xq0︸ ︷︷ ︸
nq+1

]
y =

1

n!

∂|n|y

∂xn
(x0).

Here the derivatives are written in multi-index notation, |n| := n1 + · · · + nq, and
n! := n1! · · ·nq! . Letting, in addition, the y-values coalesce to a single point y0 yields
the notation[

x10, . . . , x
1
0︸ ︷︷ ︸

n1+1

; · · · ; xq0, . . . , xq0︸ ︷︷ ︸
nq+1

∣∣ y0, . . . , y0︸ ︷︷ ︸
m+1

]
g =

1

n!m!

∂|n|+mg

∂xn∂ym
(x0, y0).

3.3 A recursive formula

Let y and g be related as in Equation 3.1. In this section, we derive a formula that
expresses divided differences of y recursively as divided differences of g and lower-order
divided differences of y.

Consider a composition of functions Rq f−→ U ×V
g−→ R, where we write f : x �−→(

f 1(x), . . . , f q(x), f ′(x)
)
. Here f ′ does not signify the derivative of some function f but

is simply some coordinate function. Let be given a nonzero vector n = (n1, . . . , nq) ∈ N
q

and a grid of points{
xi : 0 ≤ i ≤ n

}
=

{
x10, . . . , x

1
n1

}
× · · · ×

{
xq0, . . . , x

q
nq

}
⊂ U,

where xj0 ≤ · · · ≤ xjnj
for j = 1, . . . , q. Note that we allow for these coordinates to

coincide. Let f ′
i := f ′(xi) and f j

i := f j(xi) for j = 1, . . . , q and 0 ≤ i ≤ n. From
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Figure 3.1: Any sequence 0 = i0 < i1 < · · · < ik = n represents a lattice path from 0
to n.

[33, Theorem 2], we have the following multivariate chain rule in case f and g are
sufficiently smooth,

[x : 0,n](g ◦ f) =
|n|∑
k=1

∑
0=i0<···<ik=n

∑
0=j0≤···≤jq+1=k

(3.8)

[
f 1
ij0
, f 1

ij0+1
, . . . , f 1

ij1
; · · · ; f q

ijq−1
, f q

ijq−1+1
, . . . , f q

ijq

∣∣f ′
ijq
, f ′

ijq+1
, . . . , f ′

ijq+1

]
g

×

⎛⎝ q∏
r=1

jr∏
j=jr−1+1

[x : ij−1, ij]f
r

⎞⎠⎛⎝ jq+1∏
j=jq+1

[x : ij−1, ij]f
′

⎞⎠ ,

where an empty product is considered to be one. (The formula in [33] includes a term for
k = 0, but this term doesn’t show up because we chose n �= 0.) Here one should think
of 0 = i0 < · · · < ik = n as a lattice path from 0 to n and of 0 = j0 ≤ · · · ≤ jq+1 = k
as indices of points along this path; see Figure 3.1.

Next, let f : x = (x1, . . . , xq) �−→
(
x, y(x)

)
define the graph of a function y that is

implicitly defined by g as in Equation 3.1. Let {e1, . . . , eq} denote the standard basis
of Rq, and let 1 ≤ j ≤ k and 1 ≤ r ≤ q be as in Equation 3.8. It follows directly
from Equation 3.5 that the divided difference [x : ij−1, ij]f

r of the coordinate function
f r : (x1, . . . , xq) �−→ xr is equal to one whenever ij − ij−1 = er, and zero otherwise.
The only choices of 0 = j0 ≤ · · · ≤ jq+1 = k that yield a nonzero term in Equation 3.8
are therefore those satisfying

ij − ij−1 = er, for j = jr−1 + 1, . . . , jr, r = 1, . . . , q. (3.9)

Alternatively, let (s1, . . . , sq, t) := (j1 − j0, . . . , jq − jq−1, jq+1 − jq) be the sequence of
jumps in the sequence (j0, . . . , jq+1). In terms of these jumps, Equation 3.9 is equivalent
to the statement that the path i0 < · · · < ik starts with

s1 steps of e1, followed by

s2 steps of e2, followed by

...

sq steps of eq, followed by
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t arbitrary steps.

Let us call any tuple (s1, . . . , sq, t) with this property compatible with (i0, . . . , ik), or
simply compatible if it is clear which sequence (i0, . . . , ik) is referred to. Note that such
a tuple forms an integer partition k = s1 + · · ·+ sq + t. Equation 3.8 thus implies

[x : 0,n]g
(
·, y(·)

)
=

|n|∑
k=1

∑
0=i0<···<ik=n

∑
compatible
(s1,...,sq ,t)

(3.10)

[0 1 · · · s1; · · · ; 0 1 · · · sq|i|s| i|s|+1 · · · i|s|+t]g

|s|+t∏
j=|s|+1

[x : ij−1, ij]y,

where we used the shorthand notation

[0 1 · · · s1; · · · ; 0 1 · · · sq|i|s| i|s|+1 · · · i|s|+t]g

=
[
x10, x

1
1, . . . , x

1
s1
; · · · ; xq0, x

q
1, . . . , x

q
sq

∣∣yi|s| , yi|s|+1
, . . . , yi|s|+t

]
g, yi := y(xi),

from Equation 3.7 for the divided differences of g.
If y is implicitly defined by g as in Equation 3.1, the left hand side of Equation

3.10 is zero. Suppose n has length |n| = 1. Then n = er for some 1 ≤ r ≤ q. In
this case, the right hand side of Equation 3.10 consists of two terms with k = 1 and
0 = i0 < i1 = er. One finds

0 = [x : 0, er]g
(
·, y(·)

)
=

[0; · · · ; 0|0 er]g [x : 0, er]y + [0; · · · ; 0︸ ︷︷ ︸
r−1

; 0 1; 0; · · · ; 0|er]g,

or, equivalently,

[x : 0, er]y = − [

r−1︷ ︸︸ ︷
0; · · · ; 0; 0 1; 0; · · · ; 0|er]g

[0; · · · ; 0|0 er]g
, for r = 1, . . . , q. (R1)

For example when y is a function of q = 2 variables, this equation represents the two
formulas

[0 1; 0]y = − [0 1; 0|e1]g
[0; 0|0 e1]g

, [0; 0 1]y = − [0; 0 1|e2]g
[0; 0|0 e2]g

. (3.11)

Now suppose n has length |n| > 1. There is only one term in the right hand side
of Equation 3.10 with k = 1. This term is given by

0 = i0 < i1 = n, s1 = · · · = sq = 0, t = 1

and contains the highest order divided difference of y. Isolating this divided difference
yields a formula that recursively expresses divided differences of y in terms of divided
differences of g and lower-order divided differences of y,

[x : 0,n]y =

|n|∑
k=2

∑
0=i0<···<ik=n

∑
compatible
(s1,...,sq ,t)

(R2)
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(
− [0 1 · · · s1; · · · ; 0 1 · · · sq|i|s|i|s|+1 · · · i|s|+t]g

[0; · · · ; 0|0n]g

) |s|+t∏
j=|s|+1

[x : ij−1, ij]y.

Let us simplify this formula. The product in Equation R2 can be split into two
products

|s|+t∏
j=|s|+1

|ij−ij−1|=1

[x : ij−1, ij]y

|s|+t∏
j=|s|+1

|ij−ij−1|≥2

[x : ij−1, ij]y. (3.12)

From Equation R1 it follows that each divided difference in the first product can be
expressed as a quotient of divided differences of g. Our ultimate goal is to express the
left hand side of EquationR2 solely in terms of divided differences of g. To achieve this,
it seems natural to split the right hand side into a part that can directly be expressed
in terms of divided differences of g and a remaining part involving higher-order divided
differences of y. The former part can be expressed by introducing, for every sequence

(i10, . . . , i
q
0) = i0 < (i11, . . . , i

q
1) = i1 < · · · < (i1k, . . . , i

q
k) = ik,

a symbol {i0 · · · ik}g for the expression

∑
compatible
(s1,...,sq ,t)

(
−
[
i10 · · · (i10 + s1); · · · ; iq0 · · · (iq0 + sq)

∣∣i|s| · · · i|s|+t

]
g[

i10; · · · ; iq0
∣∣i0 ik]g

)
(3.13)

×
q∏

r=1

|s|+t∏
j=|s|+1

ij−ij−1=er

(
−
[
i1j−1; · · · ; ir−1

j−1; i
r
j−1 i

r
j ; i

r+1
j ; · · · ; iqj

∣∣ij]g[
i1j−1; · · · ; iqj−1

∣∣ij−1 ij
]
g

)

involving only divided differences of g. Whenever it is hard to visually separate the
multi-indices i0, . . . , ik, we write {i0, . . . , ik}g instead of {i0 · · · ik}g.

The divided differences [x : ij−1, ij]y that appear in the second product of Equation
3.12 satisfy |ij − ij−1| ≥ 2. As Equation 3.9 guarantees that this cannot happen for
j ≤ jq = |s|, we might as well start the product of these remaining divided differences
at j = 1 instead of at j = |s| + 1. This has the advantage of making the expression
independent of |s|. Equation R2 can therefore be written in the concise form

[x : 0,n]y =

|n|∑
k=2

∑
0=i0<···<ik=n

{i0 · · · ik}g
k∏

j=1
|ij−ij−1|≥2

[x : ij−1, ij]y. (R2′)

Equation R1 gives a formula for [x : 0,n]y when |n| = 1. Let us consider Equation
R2′ for the case that |n| = 2. For such n, either n = 2er with 1 ≤ r ≤ q, or n = er+es
with 1 ≤ r < s ≤ q. In the examples below we compute [x : 0,n]y for these two cases,
assuming q = 2 to simplify notation.

Example 4. Suppose n = 2e1 (the case n = 2e2 is similar). The only possible lattice
path 0 = i0 < · · · < ik = n with k = 2 in EquationR2′ is given by 0 < e1 < 2e1. As for
such a path the product in Equation R2′ is empty, one has [x : 0, 2e1]y = {0, e1, 2e1}g.
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To compute {0, e1, 2e1}g, we need to find out which integer partitions 2 = s1+s2+t
are compatible with this path. These are precisely the triples (s1, s2, t) for which

e1 = i1 − i0 = i2 − i1 = · · · = is1 − is1−1, (3.14)

e2 = is1+1 − is1 = is1+2 − is1+1 = · · · = is1+s2 − is1+s2−1, (3.15)

where the first (respectively second) statement is considered to be trivially satisfied
whenever s1 = 0 (respectively s2 = 0). As both i1−i0 and i2−i1 are equal to e1, the first
condition is automatically satisfied. As neither i1−i0 nor i2−i1 is equal to e2, necessarily
s2 = 0. It follows that there are three triples (s1, s2, t) = (0, 0, 2), (1, 0, 1), (2, 0, 0) com-
patible with (0, e1, 2e1). Each of these sequences corresponds to a term in {0, e1, 2e1}g,
and we conclude that

[x : 0, 2e1]y = {0, e1, 2e1}g = (3.16)

− [0; 0|0, e1, 2e1]g
[0; 0|0, 2e1]g

[0 1; 0|e1]g
[0; 0|0, e1]g

[1 2; 0|2e1]g
[1; 0|e1, 2e1]g

+
[0 1; 0|e1, 2e1]g
[0; 0|0, 2e1]g

[1 2; 0|2e1]g
[1; 0|e1, 2e1]g

− [0 1 2; 0|2e1]g
[0; 0|0, 2e1]g

.

Example 5. Suppose n = e1+e2. Equation R2′ is a sum over the two possible lattice
paths 0 < e1 < e1 + e2 and 0 < e2 < e1 + e2.

A triple (s1, s2, t) is compatible with the path 0 < e1 < e1 + e2 precisely when
Equations 3.14 and 3.15 hold. For this path, the first equation is equivalent to s1
either being 0 or 1. If s1 = 0, then the second equation implies that s2 = 0. If s1 = 1,
on the other hand, the second equation implies that s2 is either 0 or 1. One finds three
triples (s1, s2, t) = (0, 0, 2), (1, 0, 1), (1, 1, 0) compatible with (0, e1, e1 + e2), yielding

{0, e1, e1 + e2}g =

− [0; 0|0, e1, e1 + e2]g

[0; 0|0, e1 + e2]g

[0 1; 0|e1]g
[0; 0|0, e1]g

[1; 0 1|e1 + e2]g

[1; 0|e1, e1 + e2]g

+
[0 1; e1|e1, e1 + e2]g

[0; 0|0, e1 + e2]g

[1; 0 1|e1 + e2]g

[1; 0|e1, e1 + e2]g

− [0 1; 0 1|e1 + e2]g

[0; 0|0, e1 + e2]g
.

Similarly, a triple (s1, s2, t) is compatible with the path 0 < e2 < e1 + e2 precisely
when Equations 3.14, 3.15 hold. For this path, however, the fact that i2−i1 = e1 comes
after i1− i0 = e2 implies that s1 = 0. One finds two triples (s1, s2, t) = (0, 0, 2), (0, 1, 1)
compatible with (0, e2, e1 + e2), yielding

{0, e2, e1 + e2}g =

− [0; 0|0, e2, e1 + e2]g

[0; 0|0, e1 + e2]g

[0; 0 1|e2]g
[0; 0|0, e2]g

[0 1; 1|e1 + e2]g

[0; 1|e2, e1 + e2]g
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+
[0; 0 1|e2, e1 + e2]g

[0; 0|0, e1 + e2]g

[0 1; 1|e1 + e2]g

[0; 1|e2, e1 + e2]g
.

As for both paths the product in Equation R2′ is empty, it follows that

[x : 0, e1 + e2]y = {0, e1, e1 + e2}g + {0, e2, e1 + e2}g. (3.17)

3.4 A formula for divided differences

of implicit functions

Let y be implicitly defined by g as in Equation 3.1. In this section we derive a formula
that expresses divided differences of y solely in terms of divided differences of g. For n
with |n| = 2, Equation R2′ immediately yields the two formulas

[x : 0, 2er]y = {0, er, 2er}g, (3.18)

[x : 0, er + es]y = {0, er, er + es}g + {0, es, er + es}g, (3.19)

where 1 ≤ r < s ≤ q and the expressions {i0 · · · ik} are defined in Equation 3.13.
For n with |n| = 3, one can distinguish three cases: n = 3er, n = 2er + es, and
n = er + es + et, with 1 ≤ r, s, t ≤ q distinct. Let us compute [x : 0,n] for these n
to get a feel for what a general formula should be. Repeatedly applying Equation R2′

yields

[x : 0, 3er]y = (3.20)

{0, er, 2er, 3er}g + {0, 2er, 3er}g · {0, er, 2er}g + {0, er, 3er}g · {er, 2er, 3er}g

[x : 0, 2er + es]y = (3.21)

{0, er, 2er, 2er + es}g + {0, 2er, 2er + es}g · {0, er, 2er}g
+{0, er, 2er + es}g · {er, 2er, 2er + es}g

+{0, er, er + es, 2er + es}g + {0, er + es, 2er + es}g · {0, er, er + es}g
+{0, er, 2er + es}g · {er, er + es, 2er + es}g

+{0, es, er + es, 2er + es}g + {0, er + es, 2er + es}g · {0, es, er + es}g
+{0, es, 2er + es}g · {es, er + es, 2er + es}g

[x : 0, er + es + et]y = (3.22)

{0, er, er + es, er + es + et}g + {0, er + es, er + es + et}g · {0, er, er + es}g
+{0, er, er + es + et}g · {er, er + es, er + es + et}g

+{0, er, er + et, er + es + et}g + {0, er + et, er + es + et}g · {0, er, er + et}g
+{0, er, er + es + et}g · {er, er + et, er + es + et}g

+{0, es, er + es, er + es + et}g + {0, er + es, er + es + et}g · {0, es, er + es}g
+{0, es, er + es + et}g · {es, er + es, er + es + et}g
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+{0, es, es + et, er + es + et}g + {0, es + et, er + es + et}g · {0, es, es + et}g
+{0, es, er + es + et}g · {es, es + et, er + es + et}g

+{0, et, er + et, er + es + et}g + {0, er + et, er + es + et}g · {0, et, er + et}g
+{0, et, er + es + et}g · {et, er + et, er + es + et}g

+{0, et, es + et, er + es + et}g + {0, es + et, er + es + et}g · {0, et, es + et}g
+{0, et, er + es + et}g · {et, es + et, er + es + et}g

These three formulas exhibit a remarkable pattern. For every choice of the path 0 =
p0 < p1 < p2 < p3 = n, we seem to be getting a sum

{p0p1p2p3}g + {p0p2p3}g · {p0p1p2}g + {p0p1p3}g · {p1p2p3}g.

This expression bears a striking resemblance to the right hand side of the univariate
formula

[0123]y = {0123}g + {023}g {012}g + {013}g {123}g

established in [56, Theorem 4]. This suggests that, for general n = (n1, . . . , nq), the
divided difference [x : 0,n]y is a sum of

(
n1+···+nq

n1,...,nq

)
univariate formulas, one for each

choice of the path 0 = p0 < · · · < p|n| = n. See Figure 3.2a for an example of such a
path.

Theorem 5 below casts this suspicion into a precise form. In order to state this
theorem, we introduce some notation for polygon partitions. With a sequence of labels
p0,p1, . . . ,pn we associate the ordered vertices of a convex polygon. A partition of
a convex polygon is the result of connecting any pairs of nonadjacent vertices with
straight line segments, none of which intersect. We refer to these line segments as the
inner edges of the partition. We denote the set of all partitions of the polygon with
vertices p0,p1, . . . ,pn by P(p0,p1, . . . ,pn). Every partition π ∈ P(p0,p1, . . . ,pn) is
described by its set F (π) of (oriented) faces. Each face f ∈ F (π) is represented by
a subsequence f = (v0,v1, . . . ,vk) of the sequence (p0,p1, . . . ,pn) of length at least
three. We let E(π) denote the set of edges in π, each of which is represented by a
subsequence (v0,v1) of (p0,p1, . . . ,pn) of length two. Figure 3.2b depicts an example
of such a polygon partition.

Armed with this notation for polygon partitions, we are now able to state the Main
Theorem of this paper.

Theorem 5 (Main Theorem). For n with |n| ≥ 2,

[x : 0,n]y =
∑

0=p0<p1<···<p|n|=n

∑
π∈P(p0,p1,...,p|n|)

∏
(v0,v1,...,vr)∈F (π)

{v0v1 · · ·vr}g. (3.23)

To prove Theorem 5, our plan is to use Equation R2′ recursively to express [x :
0,n]y solely in terms of divided differences of g. Before we proceed with this proof, we
assign some visual meaning to Equation R2′ to highlight the backbone of this proof.
We call a sequence i = (i0, i1, . . . , ik) a subpath of p = (p0,p1, . . . ,pn) and p a superpath
of i, whenever

i0 = pl0 < pl0+1 < · · · < i1 = pl1 < pl1+1 < · · · < ik = plk ,
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Figure 3.2: For n = (n1, n2) = (4, 3), the figure to the left depicts a choice of a path
0 = p0 < · · · < p|n| = n. The figure to the right shows a partition of the convex poly-
gon corresponding to this path with faces (p0,p1,p2,p7), (p2,p3,p5,p6,p7), (p3,p4,p5),
inner edges (p2,p7), (p3,p5) (drawn solid), and outer edges (p0,p1), (p1,p2), . . .,
(p6,p7), (p0,p7) (drawn dotted).

for some increasing indices 0 = l0 < l1 < · · · < lk = |n|. Every subpath i of p induces a
partition in P(p0,p1, . . . ,p|n|) whose set of faces comprises an inner face (i0, i1, . . . , ik)
and outer faces (ij−1, . . . , ij) = (plj−1

,plj−1+1, . . . ,plj) for every j = 1, . . . , k with
|ij − ij−1| ≥ 2. See Figure 3.3b for an example.

In general, a sequence (i0, i1, . . . , ik) has several superpaths (p0,p1, . . . ,pn). Let us
introduce some notation to consider simultaneously the partitions of the outer faces
(each of which is a convex polygon itself) of i = (i0, i1, . . . , ik) for all these superpaths.
We define

Pi :=
k∏

j=1
m:=|ij−ij−1|≥2

∐
ij−1=q0<···<qm=ij

P(q0,q1, . . . ,qm),

which represents a set of tuples of partitions, each entry in such a tuple corresponding to
a partition of a path with steps in {e1, . . . , eq} from ij−1 to ij for some j. For example,
for i = (i0, i1, . . . , i5) =

(
(0, 0), (0, 1), (1, 1), (2, 2), (2, 3), (4, 3)

)
, one has |ij − ij−1| ≥ 2

only for j = 3, 5 (see Figure 3.3). There are two paths with steps in {e1, e2} from
i2 = (1, 1) to i3 = (2, 2) and only one from i4 = (2, 3) to i5 = (4, 3). It follows that

Pi =
(
P
(
i2, (1, 2), i3

)
� P

(
i2, (2, 1), i3

))
× P

(
i4, (3, 3), i5

)
=

{((
i2, (1, 2), i3

)
,
(
i4, (3, 3), i5

))
,
((

i2, (2, 1), i3
)
,
(
i4, (3, 3), i5

))}
.

We now associate divided differences to these geometric objects. To each outer face
(ij−1, . . . , ij) we associate the divided difference [x : ij−1, ij]y, and to each inner face
(i0, i1, . . . , ik) we associate the expression {i0 · · · ik}g. For any sequence i that appears
in the sum of Equation R2′, the corresponding inner face therefore represents that part
of Equation R2′ that can be written solely in terms of divided differences of g, while
the outer faces represent the part that is still expressed as a divided difference of y.

Proof of Theorem 5. The proof is by induction on |n|. Equations 3.18–3.22 show that
the formula holds for |n| = 2, 3. For a fixed |n| ≥ 4, suppose the formula holds for all
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Figure 3.3: For n = (n1, n2) = (4, 3), the figure to the left shows the points in the
sequence i = (i0, i1, . . . , i5) =

(
(0, 0), (0, 1), (1, 1), (2, 2), (2, 3), (4, 3)

)
, together with the

paths traced out by its two superpaths p = (p0,p1, . . . ,p7). The figure to the right
shows the convex polygon corresponding to each of these paths. The sequence i gives
rise to two outer faces (p2,p3,p4) and (p5,p6,p7), which are drawn shaded in the figure.
Depending on the choice of the superpath p, the former outer face is either

(
i2, (1, 2), i3

)
or

(
i2, (2, 1), i3

)
, while the latter is equal to

(
i4, (3, 3), i5

)
for both paths p.

smaller |n| (but with |n| ≥ 2). Consider the recursion formula from Equation R2′. As
in each term k ≥ 2, one has |ij − ij−1| < |n| for j = 1, . . . , k. By induction, therefore,
we can replace each divided difference [x : ij−1, ij]y in Equation R2′ by an expression
involving only divided differences of g. The symbol Pi enables us to consider these
expressions for [x : ij−1, ij]y simultaneously, yielding

k∏
j=1

|ij−ij−1|≥2

[x : ij−1, ij]y (3.24)

=
k∏

j=1
m:=|ij−ij−1|≥2

∑
ij−1=q0<···<qm=ij

∑
π∈P(q0,...,qm)

∏
(v0,...,vr)∈F (π)

{v0 · · ·vr}g

=
∑

(π1,π2,...)∈Pi

∏
j≥1

(v0,...,vr)∈F (πj)

{v0 · · ·vr}g.

For a given sequence 0 = i0 < · · · < ik = n with k ≥ 2, the set Pi can be identified
with the set{

π ∈ P(p0, . . . ,p|n|) : 0 = p0 < · · · < p|n| = n, i ∈ F (π)
}

by the bijection that maps any tuple (π1, π2, . . .) in Pi to the partition π with F (π) =
{i} ∪ F (π1) ∪ F (π2) ∪ · · · . Applying this bijection to Equation 3.24 and substituting
the result into the recursive formula yields

[x : 0,n]y
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=

|n|∑
k=2

∑
0=i0<···<ik=n

{i0 · · · ik}g
∑

(π1,π2,...)∈Pi

∏
j≥1

(v0,...,vr)∈F (πj)

{v0 · · ·vr}g

=

|n|∑
k=2

∑
0=i0<···<ik=n
a subpath of

0=p0<···<p|n|=n

∑
π∈P(p0,...,p|n|)

i∈F (π)

∏
(v0,...,vr)∈F (π)

{v0 · · ·vr}g

=
∑

0=p0<···<p|n|=n

∑
π∈P(p0,...,p|n|)

∏
(v0,...,vr)∈F (π)

{v0 · · ·vr}g.

3.5 Polygon partitions and planar trees

While the compact nature of Equation 3.23 is useful to state and prove Theorem 5, it
is less appropriate for proving Corollary 8 of Section 3.6 (below). In this section we
adapt Equation 3.23 to a form better suited for this purpose.

We recall the following lemma, which appears as Proposition 6.2.1 in [77].

Lemma 6. For all integers m,n with m > n ≥ 2, there is a bijection between the
following two structures:

• Planar trees with m vertices of which n are leaves and all other vertices have at
least two descendants.

• Partitions with m− n faces of a convex polygon with n+ 1 vertices.

We now explicitly describe this bijection. Suppose we are given a polygon partition
in P(p0,p1, . . . ,pn) with m− n faces. To the edge (p0,pn) we associate a vertex that
represents the root of our tree. As (p0,pn) is an outer edge, it belongs to a unique
face. The other edges of this face are taken to be the descendants of the root vertex.
As we are constructing a planar tree, we need to order these descendants; the vertices
correspond from left to right to the edges encountered when traversing the border of
the face clockwise, starting at (p0,pn). We then repeat this process for each of the
new edges until we are out of edges. This construction yields a rooted planar tree with
n leaves corresponding to the outer edges (p0,p1), (p1,p2), . . . , (pn−1,pn) and m − n
nonleaf vertices corresponding to the faces of the polygon partition.

For example, for the partition in P(p0,p1, . . . ,p7) with set of faces

{
(p0,p5,p6,p7), (p0,p2,p5), (p0,p1,p2), (p2,p4,p5), (p2,p3,p4)

}
,

this bijection can be visualized as follows.
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Here leaves are drawn as circles and nonleaf vertices are drawn as dots.
Conversely, suppose we are given a planar tree withm vertices of which n are leaves,

and all the other vertices have at least two descendants. Assign labels (p0,p1), (p1,p2),
. . . , (pn−1,pn) to the leaves as they are encountered while traversing the tree depth-
first from left to right. Recursively, we assign the label (pi0 ,pi1 , . . . ,pir) to any non-
leaf vertex whose descendants have labels of the form (pi0 , . . . ,pi1), (pi1 , . . . ,pi2), . . .,
(pir−1 , . . . ,pir). The labels of the non-leaf vertices then coincide with the faces of a
partition in P(p0,p1, . . . ,pn), and the labels of the leaves correspond to the outer
edges unequal to (p0,pn) of the full polygon. The following picture illustrates this
construction with an example.

Let T (p0,p1, . . . ,pn) denote the set of rooted planar trees with n leaves for which all
nonleaf vertices have at least two descendants. Represent each tree τ ∈ T (p0,p1, . . . ,pn)
by its set V (τ) of non-leaf vertices that are labeled as above, and label the leaves cor-
respondingly. Note that V (τ) = F (π) whenever a tree τ and polygon partition π are
related via the above bijection. From this it follows that Equation 3.23 can equivalently
be stated in terms of planar trees as

[x : 0,n]y =
∑

0=p0<p1<···<p|n|=n

∑
τ∈T (p0,p1,...,p|n|)

∏
(i0,i1,...,ik)∈V (τ)

{i0i1 · · · ik}g. (3.23′)

We wish to bring this equation into a form where we can distinguish the individual
terms in the divided differences of g. For this, we replace T (p0, . . . ,p|n|) by a struc-
ture T ′(p0, . . . ,p|n|) that encompasses all combinations of all terms in the expressions
{i0 · · · ik}g. In particular, we extend each tree in T (p0, . . . ,p|n|) with additional non-
leaf vertices for every factor in the second line of Equation 3.13, so that these can be
treated the same as the original nonleaf vertices.

Let τ be one of the trees in T (p0, . . . ,p|n|) corresponding to a polygon partition π.
Any nonleaf vertex v = (i0, . . . , ik) in V (τ) defines, together with its direct descendants,



40 CHAPTER 3. DIV. DIFF. OF MULTIVARIATE IMPLICIT FUNCTIONS

(a) (b)

Figure 3.4: The figure to the left shows the lattice path (i∗0, i
∗
1, i

∗
2, i

∗
3, i

∗
4) =

(2e1, 3e1, 4e1, 4e1 + e2, 5e1 + 3e2). The figure to the right shows a star ∗ of type
(s∗1, s

∗
2, t

∗) = (2, 1, 1) with root (i∗0, i
∗
1, i

∗
2, i

∗
3, i

∗
4), with the circles representing leaves and

the discs nonleaves.

a subtree ∗v of τ called a [rooted planar] star. Note that the bijection of Lemma 6
induces a bijection between F (π) and the set Stars(τ) of stars of nonleaf vertices of τ .
A star ∗ is said to be of type (s∗1, . . . , s

∗
q, t

∗) = (s∗, t∗), if the sequence of descendants
of its root starts with

s∗1 leaves with labels (a,b) satisfying b− a = e1, followed by

s∗2 leaves with labels (a,b) satisfying b− a = e2, followed by

...

s∗q leaves with labels (a,b) satisfying b− a = eq, followed by

t∗ nonleaves,

see Figure 3.4. Note that such a type does not exist for every star, as leaves can appear
after nonleaves.

For every integer partition k = s1 + · · · + sq + t compatible with v = (i0, . . . , ik),
we can extend ∗v to a tree τ s,tv by inserting an edge at the leaves among the final
t descendants (i|s|, i|s|+1), (i|s|+1, i|s|+2), . . . , (i|s|+t−1, i|s|+t) of v. That is, we insert an
edge for every factor in the second line of Equation 3.13. Note that if there are no such
factors, then τ s,tv = ∗v. Every star ∗ in τ s,tv is then of some (necessarily unique) type
(s∗, t∗). Using these notions, one can write

{i0 · · · ik}g =
∑

compatible
(s,t)

∏
∗∈ Stars(τs,tv )(

−
[
i1∗0 · · · (i1∗0 + s∗1); · · · ; iq∗0 · · · (iq∗0 + s∗q)

∣∣i∗|s∗| · · · i∗|s∗|+t∗
]
g[

i1∗0 ; · · · ; iq∗0
∣∣i∗0 i∗k∗]g

)
,

where each star ∗ is of type (s∗, t∗) =
(
s∗1, . . . , s

∗
q, t

∗) and has root
(
i∗0, . . . , i

∗
k∗
)
, with(

i1∗0 , . . . , i
q∗
0

)
= i∗0 <

(
i1∗1 , . . . , i

q∗
1

)
= i∗1 < · · · <

(
i1∗k∗ , . . . , i

q∗
k∗
)
= i∗k∗ .

Let T ′(p0, . . . ,p|n|) be the set of rooted planar trees obtained by taking a rooted
planar tree in T (p0, . . . ,p|n|) and replacing each of its stars ∗v by τ s,tv for some (s, t)
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compatible with v. Equivalently, by construction, T ′(p0, . . . ,p|n|) is the set of rooted
planar trees with leaves (p0,p1), (p1,p2), . . . , (p|n|−1,p|n|) and nonleaves labeled ac-
cordingly, for which each star ∗ is of some type (s∗, t∗) �= (0, 1). Equation 3.23′ can
then be stated as

[x : 0,n]y =
∑

0=p0<p1<···<p|n|=n

∑
τ ′∈T ′(p0,p1,...,p|n|)

∏
∗∈ Stars(τ ′)

(3.23′′)

(
−
[i1∗0 · · · (i1∗0 + s∗1); · · · ; iq∗0 · · · (iq∗0 + s∗q)|i∗|s∗| · · · i∗|s∗|+t∗ ]g

[i1∗0 ; · · · ; iq∗0 |i∗0 i∗k∗ ]g

)
,

where again each star ∗ is of type (s∗, t∗) = (s∗1, . . . , s
∗
q, t

∗) and has root (i∗0, . . . , i
∗
k∗),

with (
i1∗0 , . . . , i

q∗
0

)
= i∗0 <

(
i1∗1 , . . . , i

q∗
1

)
= i∗1 < · · · <

(
i1∗k∗ , . . . , i

q∗
k∗
)
= i∗k∗ .

Example 6. To the path (p0,p1,p2,p3) = (0, e1, e1 + e2, 2e1 + e2) correspond three
trees in T (p0,p1,p2,p3),

τ1 τ2 τ3

Let us consider the first tree τ1. There are two tuples (s1, t1) = (0, . . . , 0, 2),
(s2, t2) = (1, 0, . . . , 0, 1) compatible with the nonleaf vertex v = (p0,p1,p3), and we
can extend ∗v to two corresponding trees

τ s1,t1v τ s2,t2v = ∗v

Similarly, there are two tuples (s′1, t
′
1) = (0, . . . , 0, 2), (s′2, t

′
2) = (0, 1, 0, . . . , 0, 1) com-

patible with the other nonleaf vertex v′ = (p1,p2,p3) of τ1, and we find two trees
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τ
s′1,t

′
1

v′ τ
s′2,t

′
2

v′

corresponding to ∗v′ . It follows that the tree τ1 yields 2 × 2 = 4 different trees in
T ′(p0,p1,p2,p3). Analogously, one can check that τ2 yields 1× 3 trees and τ3 yields 3
trees.

We end this section with a lemma that appears as Theorem 5.3.10 in [77] and is
needed to compute the coefficients in Equation 3.25.

Lemma 7. For any k ∈ N, there are

1

r0 + r1 + · · ·+ rk

(
r0 + r1 + · · ·+ rk
r0, r1, . . . , rk

)
different planar trees with r0 vertices with 0 descendants (leaves), r1 vertices with 1
descendant, . . ., rk vertices with k descendants, and no vertices with more than k
descendants.

3.6 Higher implicit partial derivatives

Whenever g and y are sufficiently smooth, coalescing the grid points in Equation 3.23′

results in a formula for the derivatives of y in terms of the derivatives of g. We show that
this formula generalizes a formula that appears as Equation 7 in [87], which corrects a
misprint in an earlier formula by Comtet and Fiolet [26].

The formula, as stated in Equation 3.25, uses some notation for (q+1)-dimensional
partitions. If (n,m) ∈ N

q × N is a nonzero tuple of nonnegative integers, then
a (q + 1)-dimensional partition p of (n,m), denoted by p � (n,m), is a multiset{
(s1, t1), . . . , (sr, tr)

}
of nonzero tuples in N

q × N that sum to (n,m) when counting
multiplicities. We let |p| = r denote the number of terms in the partition p, counting
the multiplicity μp;s,t of each tuple (s, t) in p.

Let y be implicitly defined by g as in Equation 3.1. We introduce the shorthands

yn = yn(x) :=
∂|n|y

∂xn
(x), gs,t = gs,t

(
x, y(x)

)
:=

∂|s|+tg

∂xsyt
(
x, y(x)

)
.

As the multiplicities μp;s,t sum to |p|, it makes sense to consider the multinomial coef-
ficient( |p|

. . . , μp;s,t, . . .

)
for any partition p.
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Corollary 8. If y and g are sufficiently smooth, then, for any x ∈ U and nonzero
n ∈ N

q,

yn(x)

n!
=

∑
p	 (n,|p|−1)

(0,1)/∈p

1

|p|

( |p|
. . . , μp;s,t, . . .

) ∏
(s,t)∈p

(
− 1

s!t!

gs,t
(
x, y(x)

)
g0,1

(
x, y(x)

)) . (3.25)

Here the product is understood to be of μp;s,t copies for every distinct element (s, t)
of the multiset p. The self-referring nature of the summation makes it not directly
obvious that there is only a finite number of partitions p of this form for any n. Given
such a partition p, only a ≤ |n| of its elements (s, t) satisfy s �= 0. Since p does not
have (0, 1) as an element, each of the final coordinates of the b remaining elements
of p is at least two. Then 2b ≤ |p| − 1 = a + b − 1 implies that p contains at most
|p| = a + b ≤ 2a − 1 ≤ 2|n| − 1 elements. This bound guarantees that any partition
p should sum to a tuple smaller than (n, 2|n| − 1), implying that, for given n, there is
but a finite number of multisets p of nonzero tuples in N

q ×N satisfying p � (n, |p|−1)
and (0, 1) /∈ p.

On the other hand, the existence of partitions of this form can be seen by taking
simple examples. For example, for q = 2 and n = (1, 0), (2, 0), (1, 1) one finds partitions

n = (1, 0) : {(1, 0, 0)} � (1, 0, 0),

n = (2, 0) : {(2, 0, 0)} � (2, 0, 0),

{(1, 0, 1), (1, 0, 0)} � (2, 0, 1),

{(0, 0, 2), (1, 0, 0), (1, 0, 0)} � (2, 0, 2),

n = (1, 1) : {(1, 1, 0)} � (1, 1, 0), (3.26)

{(1, 0, 0), (0, 1, 1)}, {(0, 1, 0), (1, 0, 1)} � (1, 1, 1),

{(1, 0, 0), (0, 1, 0), (0, 0, 2)} � (1, 1, 2).

For these n, the corollary states

y1,0 =− g1,0,0
g0,0,1

,

y2,0 =− g2,0,0
g0,0,1

+ 2
g1,0,1g1,0,0
g20,0,1

− g0,0,2g
2
1,0,0

g30,0,1
,

y1,1 =− g1,1,0
g0,0,1

+
g1,0,0g0,1,1
g20,0,1

+
g0,1,0g1,0,1
g20,0,1

− g1,0,0g0,1,0g0,0,2
g30,0,1

. (3.27)

Coalescing the grid to a single point x0 in Equation 3.23′′, one finds that

yn(x0)

n!
=

∑
0=p0<p1<···<p|n|=n

∑
τ ′∈T ′(p0,p1,...,p|n|)

(3.28)

∏
∗∈ Stars(τ ′)

(
− 1

s∗!t∗!

gs∗,t∗
(
x0, y(x0)

)
g0,1

(
x0, y(x0)

)) ,
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p {(0, 0, 2), (1, 0, 0), (0, 1, 0)} {(0, 1, 1), (1, 0, 0)} {(1, 0, 1), (0, 1, 0)} {(1, 1, 0)}

*

τ ′ τ ′1 τ ′2 τ ′3 τ ′4 τ ′5

Table 3.1: For n = (1, 1), the first row lists the multisets p with (0, 0, 1) /∈ p and
p � (n, |p| − 1). The second row depicts the stars ∗ associated to each of these multisets.
The third row shows the different trees τ ′ that can be formed by connecting these stars,
together with the labels of their vertices.

where each star ∗ is of type (s∗, t∗). Clearly Equations 3.25 and 3.28 are in a similar
form. The only difference seems to be that in Equation 3.25 equal terms are grouped
together into one term with a coefficient. It is not surprising that there are duplicate
terms in Equation 3.28, as each term depends only on the types of the stars, not on
how these stars are connected to form a tree.

We first provide an example that introduces the flavor of the proof of Corollary 8.

Example 7. Let n = (1, 1). Coalescing the grid to a single point (x10, x
2
0) in Equation

3.17, one finds

y1,1 = − 1

2

g0,0,2g1,0,0g0,1,0
g30,0,1

+
g1,0,1g0,1,0
g20,0,1

− g1,1,0
g0,0,1

(3.29)

− 1

2

g0,0,2g0,1,0g1,0,0
g30,0,1

+
g0,1,1g1,0,0
g20,0,1

at this point (x10, x
2
0). Clearly Equations 3.27 and 3.29 are equivalent. In this exam-

ple we hint at how the terms in these equations are related, suggesting a link that
generalizes to the generic construction in the proof of Corollary 8.

First of all note that in both Equations 3.27 and 3.29 the denominators can be
determined from their numerators. Taking for granted that the coefficients agree, it
therefore suffices to check that, for these equations, the monomials of the numerators
of their terms agree.

For each monomial in Equation 3.29, the orders of the derivatives in the numerators
form a multiset p of triples in N

2×N with (0, 0, 1) /∈ p and p � (1, 1, |p| − 1). It follows
that every monomial in Equation 3.29 appears in Equation 3.27 as well.

Conversely, we show that every monomial in Equation 3.27 appears in Equation
3.29 as well, by pointing out which paths (0, 0) = p0 < p1 < p2 = (1, 1) and trees
τ ′ ∈ T ′(p0,p1,p2) correspond to it. For a given monomial in Equation 3.27, let p be
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the corresponding partition in Equation 3.26. To each triple (s1, s2, t) in p we associate
a star of type (s1, s2, t). As can be seen in Table 3.1, one can, for each multiset
p, connect these stars to a planar tree τ ′ with two leaves, and sometimes there are
several ways to do this. After demanding the first coordinate of the left leaf to be
(0, 0), there is only one way to label the leaves of τ ′ that agrees with the types of
stars of τ ′. Thus we find three trees τ ′1, τ

′
4, τ

′
5 ∈ T ′((0, 0), (1, 0), (1, 1)) and two trees

τ ′2, τ
′
3 ∈ T ′((0, 0), (0, 1), (1, 1)), each of which corresponds to a term in Equation 3.29.

Proof of Corollary 8. In both Equation 3.25 and 3.28, each term comprises some coef-
ficient and a monomial in the symbols gs,t divided by a power of g0,1 of the same total
degree. As this monomial uniquely determines the denominator, the following three
steps suffice to show that Equations 3.25 and 3.28 are equivalent.

1. Every term in Equation 3.28 appears also in Equation 3.25. Consider an
arbitrary term T in the right hand side of Equation 3.28. This term arises from
picking a path 0 = p0 < · · · < p|n| = n and a tree τ ′ ∈ T ′(p0, . . . ,p|n|). Let
p =

{
(s1, t1), . . . , (s|p|, t|p|)

}
be the multiset of types of the stars in τ ′. That is, p

is the multiset of orders of the derivatives in the numerator of T .
Since for any tree in T ′(p0, . . . ,p|n|) the steps made by its leaves sum to n, it follows

that s1+ · · ·+ s|p| = n. Moreover, with the exception of the root of τ ′, the root of each
star in Stars(τ ′) connects to one of the t1 + · · · + t|p| nonleaf descendants of the stars,
implying that t1 + · · ·+ t|p| = |p| − 1. As τ ′ has no vertices with precisely one nonleaf
descendant, none of the types in p can be equal to (0, 1). The orders of the derivatives
in the numerator of Equation 3.28 therefore constitute a multiset p with elements in
N

q × N for which (0, 1) /∈ p and p � (n, |p| − 1). We conclude that, up to coefficients,
each term in Equation 3.28 appears as a term in Equation 3.25 as well.

2. Every term in Equation 3.25 appears also in Equation 3.28. Suppose we are
given a multiset p = {(s1, t), . . . , (s|p|, t|p|)} of tuples in N

q ×N satisfying (0, 1) /∈ p and
p � (n, |p| − 1) as in Equation 3.25. To each element (s, t) of p, we associate a star of
type (s, t) whose labels are yet to be determined. Because the number of stars |p| is one
more than the sum of the non-leaf descendants t1 + · · · + t|p|, one can always connect
these stars to a planar tree τ ′ with |s1|+· · ·+|s|p|| = |n| leaves. Moreover, since each star
in τ ′ is of some type unequal to (0, 1), there is a unique path 0 = p0 < · · · < p|n| = n
and labeling of the leaves of τ ′ such that τ ′ ∈ T ′(p0, . . . ,p|n|). We conclude that, up
to coefficients, each term in Equation 3.25 appears as a term in Equation 3.28 as well.

3. Corresponding terms have equal coefficients. Now we have shown that the
monomials in Equation 3.25 are the same as those in Equation 3.28, it remains to
show that their coefficients agree. Every term in Equation 3.28 corresponding to a
tree τ ′ ∈ T ′(p0, . . . ,p|n|) with p the multiset of the types of the stars of τ ′ will con-
tribute (−1)#Stars(τ ′) = (−1)|p| to the term in Equation 3.25 corresponding to p. The
coefficients can be shown to agree, therefore, by counting, for every multiset p with
(0, 1) /∈ p � (n, |p| − 1), the number of different planar trees that can be formed by
connecting the stars of types corresponding to the elements of p.

Let p be as in Equation 3.25. Let us call two elements (si, ti), (sj, tj) of p equivalent
whenever ti = tj. The equivalence classes form a new multiset p′ in which each element
[(si, t)], or simply t for short, has multiplicity μt :=

∑
s≥0 μp;s,t. Clearly p

′ has the same
number of elements as p. Associate with each t ∈ p′ a star with t descendants. Here
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we think of a leaf as a star with 0 descendants. By Lemma 7, one can construct

1

|p′|

( |p′|
μ0, μ1, . . .

)
different planar trees from these stars. For the vertices with t descendants of any such
planar tree, the multinomial coefficient of {μp;s,t : s ≥ 0} gives the number of ways to
reinsert the leaves. It follows that we can form

1

|p′|

( |p′|
μ0, μ1, . . .

)∏
t≥0

(
μt

. . . , μp;s,t, . . .

)
=

1

|p|

( |p|
. . . , μp;s,t, . . .

)

different planar trees from the stars corresponding to p. This agrees with the coefficient
in Equation 3.25.

3.7 Analysis of the number of terms

In this section we count the number of terms that appear in Equation 3.23 by means
of a generating function. It was obtained by modifying a generating function given
by Wilde in Section 7 in [87] for the number of terms in Equation 3.25, which, in its
turn, is based upon an erroneous generating function by Comtet and Fiolet in [26] and
[25, Page 175]. Comtet and Fiolet do, however, give a table with the correct number
of terms for n = n1 = 1, 2, . . . , 23, so this error is presumably a repeated misprint.

Let E := N
q × N − {(0, 0), (0, 1)}. For n ∈ N

q with |n| = 1, let a(n) = 1 be the
number of terms in Equation R1. For n ∈ N

q with |n| ≥ 2, let a(n) be the number
of terms in the right hand side of Equation 3.23. Thus a(n) represents the number of
terms needed to express [x : 0,n]y in terms of divided differences of g.

Lemma 9. For nonzero n ∈ N
q, the number of terms a(n) is equal to the coefficient

of xny|n|−1 in

h(x, y) := − log

⎛⎝1−
∑

(s,t)∈E
xsy|s|+t−1

⎞⎠ =
∞∑
r=1

1

r

⎛⎝ ∑
(s,t)∈E

xsy|s|+t−1

⎞⎠r

. (3.30)

Proof. For any positive integer r, let

Mr :=

{
μ : E −→ N

∣∣∣∣ ∑
e∈E

μ(e) = r

}
be a set of weight functions on E with total weight r. That is,Mr represents all possible
ways to assign nonnegative integers to the elements of E that sum to r. For any positive
integer r and μ ∈ Mr with support {e1, . . . , el}, we can form the multinomial coefficient(

r

. . . , μ(e), . . .

)
:=

(
r

μ(e1), . . . , μ(el)

)
.
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def P(N1 ,N2 , q ) :
E = Cartes ianProduct ( range (N1+1) , range (N2+1) , \

range (N1+N2+1))
E = [ ( i1 , i2 , j ) for ( i1 , i2 , j ) in E i f (\

( i1 , i2 , j ) != (0 , 0 , 0 ) \
and ( i1 , i2 , j ) != (0 , 0 , 1 ) \
and i 1 + i 2 + j <= N1 + N2 \
and 2∗( i 1 + i 2 ) + j − 1 <= 2∗(N1+N2) − q ) ]

S = sum ( [X1ˆ i 1 ∗X2ˆ i 2 ∗Yˆ( i 1+i 2+t−1) for ( i1 , i2 , t ) in E] )
return S

R.<X1 ,X2 ,Y> = PolynomialRing (ZZ , 3 )

N1 , N2 = 6 , 6

h = sum ( [ ( (P(N1 ,N2 , q ) )ˆ q )/q for q in range (1 , 2∗ (N1+N2 ) ) ] )
for n1 in range (0 , N1+1):

for n2 in range (0 , n1+1):
i f ( n1 , n2 ) != (0 , 0 ) :

a = h . c o e f f i c i e n t ({X1 : n1 , X2 : n2 , Y: n1+n2−1})
print ”a ( ” , n1 , ” , ” , n2 , ” ) = ” , a

Listing 3.1: The Sage code computes the number of terms a(n1, n2) for q = 2.

By themultinomial theorem, expanding the rth power in the right hand side of Equation
3.30 yields

h(x, y) =
∞∑
r=1

∑
μ∈Mr

1

r

(
r

. . . , μ(e), . . .

) ∏
e:=(s,t)∈E

(
xsy|s|+t−1

)μ(e)
. (3.31)

For any nonzero n ∈ N
q, let us compute the coefficient of xny|n|−1. Let r and

μ be as in Equation 3.31. The elements e ∈ E with μ(e) > 0 define a multiset
p = {(s1, t1), . . . , (sr, tr)}, where we listed μ(e) copies of each e in p. The term in
Equation 3.31 that corresponds to r and μ contributes to xny|n|−1 precisely when

s1 + · · ·+ sr = n and |s1|+ t1 − 1 + · · ·+ |sr|+ tr − 1 = |n| − 1,

or equivalently when s1 + · · · + sr = n and t1 + · · · + tr = r − 1. In other words,
precisely when p forms a (q + 1)-dimensional partition of (n, |p| − 1). In this case, the
term contributes

1

r

(
r

μ(s1, t1), . . . , μ(sr, tr)

)
to the coefficient of xny|n|−1. By the proof of Theorem 8, this is precisely the number of
terms in Equation 3.23 that collapse to the term in Equation 3.25 that corresponds to
p. Summing these contributions over all multisets p appearing in Equation 3.25 yields
the coefficient of xny|n|−1.
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a(n1, n2) 0 1 2 3 4 5 6

0 X 1 3 13 71 441 2955
1 5 33 245 1921 15525 127905
2 351 3597 35931 352665 3417975
3 46709 563821 6483285 72009645
4 7963151 104772825 1309699875
5 1550685285 21523435641
6 328234085775

Table 3.2: The upper triangular part of a symmetric table of the number of terms
a(n1, n2) in Equation 3.23.

The coefficient of xny|n|−1 can be computed by brute force, by taking into account
only the terms that can contribute. See Listing 3.1 for an implementation of such a
procedure in Sage [80], using Singular [44] as a back-end.

Note that it is trivial to extend this code to any other number q of variables. The
program yields the number of terms a(n1, n2) for n1, n2 ≤ 6, enlisted in Table 3.2. Note
that the number of terms a(2, 0) = 3 and a(1, 1) = 5 agree with what was found in
Examples 4, 5. More entries in Table 3.2 can be found in The On-Line Encyclopedia
of Integer Sequences [57, 58], as can the number of terms in Equation 3.25 for q = 1, 2
[59,88].

Any bivariate divided difference
[
x10, . . . , x

1
n1
; x20

]
y(·, ·) is equal to the univariate

divided difference
[
x10, . . . , x

1
n1

]
of the partial function y

(
·, x20

)
. The first row in Ta-

ble 3.2 therefore represents the number of terms that appear in Equation 3.23 when
specializing Theorem 5 to q = 1, which is the case that was treated in [56].

Although the number of terms a(n) grows exponentially with n, its growth factor
can be smaller in practical applications. Suppose we are given a function g(x, y), for
which the orders of its nonvanishing derivatives constitute the set Δg := {(s, t) ∈
N

q × N : gs,t �≡ 0} of lattice points. Then any divided difference of g is zero whenever
its order is not a member of Δg. That is,[

x10, . . . , x
1
s1
; · · · ; xq0, . . . , xqsq

∣∣y0, . . . , yt]g = 0,

whenever (s1, . . . , sq, t) /∈ Δg. The converse is not always true, as for nontrivial gs,t a
divided difference of g of order (s, t) can be zero for a particular choice of the grid. For
a generic grid, however, a divided difference of g is zero precisely when its order is not
a member of Δg.

Let Eg := E ∩Δg. For a generic x ∈ U , a partition p � (n, |p| − 1) with (0, 1) /∈ p
yields a nonzero term in Equation 3.25 precisely when all its elements are a member
of Δg. When counting the number of nonzero terms ag(n) for a given function g and
a generic grid, we should therefore consider precisely those multisets in the proof of
Lemma 9 for which all elements are a member of Eg. This proves the following theorem.

Theorem 10. For nonzero n ∈ N
q and a generic choice of the grid the number of
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ag(n1, n2) 0 1 2 3 4 5 6

0 X 1 2 4 12 40 144
1 2 8 32 136 592 2624
2 44 232 1216 6304 32416
3 1520 9440 56448 328384
4 67440 454944 2942912
5 3409728 24224256
6 187227264

Table 3.3: The upper triangular part of a symmetric table of the number of terms
ag(n1, n2) in Equation 3.23 for g(x1, x2, y) = (x1)2 + (x2)2 + y2 − 1.

nonzero terms ag(n) is the coefficient of xny|n|−1 in

hg(x, y) := − log

⎛⎝1−
∑

(s,t)∈Eg

xsy|s|+t−1

⎞⎠ =
∞∑
r=1

1

r

⎛⎝ ∑
(s,t)∈Eg

xsy|s|+t−1

⎞⎠r

. (3.32)

As an example, let us see how many terms one gets for a polynomial of low degree.
Suppose g(x1, x2, y) := (x1)2 + (x2)2 + y2 − 1. Then

Δg = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0)},

Eg = {(0, 1, 0), (1, 0, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0)}.
The generating function becomes

hg(x
1, x2, y) = − log

(
1− x1 − x2 − y − (x1)2y − (x2)2y

)
.

Running Listing 3.1 with E replaced by Eg, one finds, enlisted in Table 3.3, the number
of nonzero terms for this particular function g and a generic grid. Although the number
of nonzero terms grows exponentially as well, the table suggests that it does so with a
smaller growth factor.
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Generalized Principal Lattices

In this chapter we study the generalized principal lattices briefly mentioned in the
introduction. These meshes are unisolvent in some space of polynomials of bounded
total degree, play an important role in the classification of the sets satisfying the
geometric characterization, and have a simple error formula [17, Theorem 10].

In Section 4.1, we show how generalized principal lattices are a natural generaliza-
tion of triangular meshes. The section after that briefly summarizes how any planar
generalized principal lattice corresponds to a plane cubic curve equipped with a group
law that encodes collinearity of its points, which is a result recently developed in a
series of articles by Carnicer, Garćıa-Esnaola, Gasca, and Godes [10, 14, 15, 20].

Concrete examples in [10, 14] show how this characterization can be applied to
construct generalized principal lattices in the plane, and in [15,16] a classification was
derived from Newton’s classification of cubic curves in the plane. In Section 4.3 we
exhibit this classification, using the Plücker relations to derive some of the claims made
in [16] without proof. In addition we give for each curve type in the classification a
detailed example, several of which are based upon the ones given by Carnicer, Gasca,
and Garćıa-Esnaola, that shows concretely how to find generalized principal lattices
and what they look like.

The final section of the chapter studies generalized principal lattices in higher-
dimensional space, which were introduced by Carnicer, Gasca, and Sauer in [17]. In
this article, the theory of Haar systems is applied to construct various examples of
generalized principal lattices (of the types (c), (d), (e), (i), (j), (k) in Table 4.4).
Earlier, (n + 1)-pencil lattices (type (n) in Table 4.4) were introduced by Lee and
Phillips [53], generalizing the principal lattices (type (o) in Table 4.4) introduced by
Nicolaides [63]. The construction of the generalized principal lattices in [17] can be
carried out for any family of parameterized curves satisfying two properties, called
P1 and P2 in Section 4.4.3.

Because the curves underlying the examples in [17] are given parametrically, it is
not immediately obvious that they are of the same type. After converting these curves
to implicit form, however, we realized that these are all real algebraic curves in P

n

51
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of degree n + 1 and arithmetic genus 1. Moreover, for n = 3 these curves can be
conceived very concretely as the complete intersection of two quadric surfaces, whose
classification we recall in Section 4.4.4. This prompted us to investigate whether all
such curves satisfy Properties P1, P2 and can thus be used to construct generalized
principal lattices in P

3. In Sections 4.4.5 – 4.4.9, we bring each curve type into a normal
form by means of a real projective change of coordinates and find a parameterization
satisfying Properties P1, P2. The resulting classification is summarized in Table 4.4.

4.1 From triangular meshes

to generalized principal lattices

In this section we show that the notion of a generalized principal lattice naturally
arises from the simple notion of a triangular mesh. For simplicity we only consider
meshes in the plane, postponing the definition of a generalized principal lattice in
higher-dimensional space to a later section.

A triangular mesh of degree m is a mesh of points in the plane that is, after scaling
by an appropriate factor, of the form

S =
{
xij := (i, j) ∈ N

2 : i, j ≥ 0, i+ j ≤ m
}
. (4.1)

Figure 4.1a shows an example of a triangular mesh for m = 6. The set in Expression
4.1 can be constructed by taking the points of triple intersection of the 3 families of
m+ 1 lines given by the linear forms

x− 0, x− 1, . . . , x−m; (4.2)

y − 0, y − 1, . . . , y −m;

x+ y − 0, x+ y − 1, . . . , x+ y −m.

Triangular meshes have been studied extensively in the literature, appearing as early
as 1903 in the work of Otto Biermann [4]. See also the classical textbooks [47, Section
6.6], [49, Sections 11.5, 11.16], and [78, Chapter 19].

For any choice of real function values {fij} at the points {xij}, the lines in Equation
4.2 immediately yield the Lagrange interpolation polynomial

L(x) =
∑
i,j≥0
i+j≤m

fijLij,

where the Lagrange polynomials Lij are defined as

Lij(x, y) =

(
i−1∏
k=0

x− k

i− k

)
·
(

j−1∏
k=0

y − k

j − k

)
·
(

m∏
k=i+j+1

x+ y − k

i+ j − k

)
.

Note that each Lij is a polynomial of total degree m whose linear factors represent lines
from Equation 4.2. The linear factors are normalized such that Lij(xij) = 1, and the
lines are chosen such as to contain every point except xij, see Figure 4.1b and compare
with Figure 1.5b.
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(a) (b)

Figure 4.1: For m = 6, the figure to the left shows the triangular mesh from Expression
4.1 and the corresponding lines from Equation 4.2. The figure to the right shows only
the lines whose linear forms appear in the Lagrange polynomial Lij for (i, j) = (2, 3).

(a) (b)

Figure 4.2: To the left, a geometric mesh with m = 3 and q = 1.5. To the right, a
rotation-symmetric 3-pencil lattice with m = 3.

Alternatively, any such interpolating polynomial can be brought into Newton form,
which leads to explicit error formulas in terms of bivariate divided differences [47,
Section 6.6].

In [63], Nicolaides generalizes the notion of a triangular mesh to that of a principal
lattice (called regular mesh in [52]). To understand his construction, let us rephrase
the definition of a triangular mesh as follows. Let Nm :=

{
0, 1, . . . ,m

}
and consider

the simplex Δ ⊂ R
2 spanned by the vertices v0 = (0, 0), v1 = (m, 0), v2 = (0,m). In

terms of barycentric coordinates, any triangular mesh of degree m can be written as{
x ∈ R

2 : x =
λ0
m
v0 +

λ1
m
v1 +

λ2
m
v2, λi ∈ Nm, λ0 + λ1 + λ2 = m

}
.

Replacing Δ by a general simplex in R
2, one arrives at Nicolaides’ definition of a

principal lattice. For principal lattices, one again has explicit formulas for the Lagrange
form of any interpolant and its error [63, 64].

Next, Lee and Phillips discovered that instead of using meshes in which the coor-
dinates are evenly spaced (that is, where they form an arithmetic progression), one
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could more generally consider meshes for which the differences between consecutive co-
ordinates form a geometric progression. In [51, 52], these meshes are called geometric
meshes. More precisely, they considered, for any q > 0, the mesh of points{

xij = ([i], [j]′) ∈ R
2 : i, j ≥ 0, i+ j ≤ m

}
,

where [0] := 0, [0]′ := 0, and

[i] := 1 + q + q2 + · · ·+ qi−1, [j]′ := 1 + q−1 + q−2 + · · ·+ q−j+1

for i, j > 0. These points are the triple points of intersection of the lines

x− [i] = 0, i = 0, . . . ,m;

y − [j]′ = 0, j = 0, . . . ,m;

x+ qk−1y − [k] = 0, k = 0, . . . ,m

(taking precisely one line from each family). Note that one recovers a triangular mesh
by taking q = 1. Analogously to the case of triangular meshes, these lines lead to a
simple expression for the Lagrange interpolating polynomial. Using notation from the
theory of divided q-differences, one finds a simple expression for the Newton form as
well [65, Section 5.4].

The discovery of geometric meshes shed some new light on principal lattices. Let
us embed the Euclidean plane R2 in the projective plane P2 by the injection (x, y) �−→
[1 : x : y]. Denote the first coordinate of P2 by w. The linear pencil P of lines in P

2

with vertex [a : b : c] is defined as the set of lines in P
2 passing through [a : b : c].

Note that the lines defined by x + qk−1y − [k] = 0 with 0 ≤ k ≤ m all pass through
the point

(
1

1−q
, 1
1−q−1

)
∈ R

2. In other words, they are part of a linear pencil of lines.
But in the projective plane the same holds for the other two sets of lines, but there
the lines meet in a point at infinity: The lines defined by x− [i] = 0 meet in the point
[0 : 0 : 1], and the lines defined by y − [j]′ = 0 meet in the point [0 : 1 : 0]. Similarly,
each family of lines defining a triangular mesh is part of a linear pencil, the vertices
being [0 : 0 : 1], [0 : 1 : 0], and [0 : 1 : −1] in this case.

One can construct the Lagrange interpolating polynomial for any mesh defined as
the points of triple intersection of three families of m+1 lines whose incidence structure
equals that of the lines defining a triangular mesh of degree m. This raises the question
of how to construct other families of 3 × (m + 1) lines with this incidence structure.
Defining the notion of a 3-pencil lattice, Lee and Phillips gave a flexible construction for
lines coming from pencils whose vertices are not collinear [53]. The principal lattices
appear as a degenerate case of the vertices spanning the line at infinity. An example
of a 3-pencil lattice can be found in Figure 4.2b. We postpone the definition of an
(n + 1)-pencil lattice to Section 4.4 and refer the reader to [65, Section 5.4] for a
friendly introduction for the case n = 2.

In [14, 15], Carnicer and Gasca developed the idea of unifying the three linear
pencils of lines of a 3-pencil lattice into one cubic pencil of lines. Just as a linear
pencil of lines can be defined as the set of lines L : aw + bx + cy = 0 whose line
coordinates [a : b : c] satisfy the homogeneous linear equation w1a + x1b + y1c = 0
for some fixed point [w1 : x1 : y1] ∈ P

2, a cubic pencil of lines is defined as the set
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of lines whose line coordinates satisfy a homogeneous cubic equation F (a, b, c) = 0
with no repeating factors. Via the dual correspondence, the lines in a cubic pencil
can thus be identified with the points of a reduced cubic curve embedded in the dual
projective space P̂

2. In this manner, the lines defining a 3-pencil lattice with vertices
[w1 : x1 : y1], [w2 : x2 : y2], and [w3 : x3 : y3] correspond to points on the curve in P̂

2

with homogeneous cubic equation

F (a, b, c) := (w1a+ x1b+ y1c) · (w2a+ x2b+ y2c) · (w3a+ x3b+ y3c) = 0.

Although not all cubic forms can be factored into a product of three linear forms, it
turns out that these other cubic forms give rise to meshes similar to principal lattices.
To account for these new configurations, Carnicer and Godes introduced, using an
abstract combinatorial definition, the concept of a generalized principal lattice [18].

For any nonnegative integer m, we introduce the notation

Sm :=
{
(i0, i1, i2) : i0, i1, i2 ∈ {0, 1, . . . ,m}, i0 + i1 + i2 = m

}
.

Definition 11 (Generalized Principal Lattice in P
2). Let m ≥ 0, and let

L0
0, L

0
1, . . . , L

0
m, L1

0, L
1
1, . . . , L

1
m, L2

0, L
2
1, . . . , L

2
m

be three families of m+1 lines in P
2 for which any two of the 3(m+1) lines are distinct.

Suppose that

GPL1 Any intersection Lr1
i1

∩ Lr2
i2
, corresponding to distinct indices r1, r2 ∈ {0, 1, 2},

consists of exactly one point.

GPL2 The intersection L0
i0
∩ L1

i1
∩ L2

i2
�= ∅ whenever (i0, i1, i2) ∈ Sm.

Under these assumptions, the set of points

X :=
{
xi : L0

i0
∩ L1

i1
∩ L2

i2
= {xi}, i = (i0, i1, i2) ∈ Sm

}
(4.3)

is a generalized principal lattice of degree m in the plane if, additionally,

GPL3 For any i0, i1, i2 ∈ {0, 1, . . . ,m},
L0
i0
∩ L1

i1
∩ L2

i2
∩X �= ∅ =⇒ (i0, i1, i2) ∈ Sm.

Note that Definition 11 is weaker than one that replaces the conditions GPL1,
GPL2, and GPL3 by the condition∣∣L0

i0
∩ L1

i1
∩ L2

i2

∣∣ = 1 ⇐⇒ (i0, i1, i2) ∈ Sm,

as was Carnicer and Gasca’s initial attempt at generalizing the concept of a principal
lattice [14, 15]. Figure 4.3 shows a generalized principal lattice in the plane defined
by a configuration of lines {Lr

i} for which there exists a point P , not belonging to the
generalized principal lattice, in which three lines L0

i0
, L1

i1
, L2

i2
meet for which i0+i1+i2 �=

m (compare [18, Remark 2.3]).
A disadvantage of Definition 11 is that it is not immediately clear how to obtain

such configurations of lines {Lr
i}. For this purpose, Carnicer and Gasca introduced a

characterization of generalized principal lattices in terms of its associated cubic pencil.
This is the topic of the next section.



56 CHAPTER 4. GENERALIZED PRINCIPAL LATTICES

L
0

0
L

0

1

L
1

0

L
1

1

L
2

0
L

2

1

P

Figure 4.3: A generalized principal lattice with m = 1, for which there is an additional
point P where the three lines L0

1, L
1
1, L

2
1 intersect.

4.2 A characterization

of planar generalized principal lattices

Let Λ be a cubic pencil of lines defined by a homogeneous cubic equation F (a, b, c) = 0,

and let C ⊂ P̂
2 be the associated projective cubic curve. Denote the nonsingular part

of C by Cns, and let Λns denote the corresponding subset of Λ. Define V to be the set
of vertices of the linear pencils contained in Λ. The number of such vertices depends
on the factorization of F in R[a, b, c]:

• |V | = 0 if F is irreducible,

• |V | = 1 if F is the product of a linear and an irreducible quadratic form,

• |V | = 3 if F is the product of three linear forms.

One cannot just select any three families of m + 1 lines from Λ and expect them
to define a generalized principal lattice. For instance, permuting the lines of a trian-
gular mesh will typically not yield a configuration of lines that defines a generalized
principal lattice, even though all lines are still part of a cubic pencil. In order to select
three appropriate families of lines from Λ, Carnicer and Gasca encode the concurrency
properties of Definition 11 in terms of a binary operation ⊕ on Λns. More precisely,
from [16, Prop. 3] we have the following theorem.

Theorem 12 (Carnicer and Gasca). As above, let Λ be a cubic pencil of lines with
nonsingular part Λns and set of vertices V . Then there exists a binary operation ⊕ :
Λns×Λns −→ Λns and line O ∈ Λns such that (Λns,⊕, O) is an Abelian group satisfying
the following property.

♣ Any three lines L1, L2, L3 ∈ Λns such that L1 ∩L2 ∩L3 ∩ V = ∅ are concurrent if
and only if L1 ⊕ L2 ⊕ L3 = O.

In this group, let us denote by �L the inverse of a line L and by kL the sum
L ⊕ · · · ⊕ L of k lines L. When C is an elliptic curve, the binary operation ⊕ is the
well-known group law on an elliptic curve. When C is a singular irreducible curve, the
binary operation ⊕ satisfying Property ♣ is quite known as well [5, Ex. 10.19–10.22]
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[38, Ex. 5.35]. In [10, Prop. 4.1] and [15], a similar binary operation ⊕ satisfying
Property ♣ was established for cubic pencils coming from reducible reduced cubic
curves. At the moment, the existence of such a binary operation is more important
than its precise form. In Section 4.3, we shall explicitly describe these groups for
various cubic curves.

How can the group law ⊕ be used to construct a generalized principal lattice? In
[20, Thm. 2.4], one finds the following characterization of generalized principal lattices
in the plane.

Theorem 13 (Carnicer and Gasca). Let Λ be a cubic pencil of lines with associated
group (Λns,⊕, O) as above.

1. Let H,K1, K2 be three lines of Λns. Then the 3(m+ 1) lines

L0
i := K1 ⊕ iH, i = 0, . . . ,m (4.4)

L1
j := K2 ⊕ jH, j = 0, . . . ,m

L2
k := �K1 �K2 ⊕ (k −m)H, k = 0, . . . ,m

are distinct if and only if

H, 2H, . . . ,mH �= O, and (4.5)

K1 �K2 ⊕mH, �2K1 �K2, �K1 � 2K2 /∈ {O,H, 2H, . . . , 2mH}.
Moreover, if (i, j, k) ∈ Sm then L0

i ⊕ L1
j ⊕ L2

k = O.

2. Let H,K1, K2 be three lines of Λns satisfying Conditions 4.5 and let {Lr
i} be

the lines defined by Equation 4.4. If (i, j, k) ∈ Sm, then the lines L0
i , L

1
j , L

2
k

are concurrent. Let X be defined from the lines {Lr
i} as in Equation 4.3. If

X ∩ V = ∅, then X is a generalized principal lattice of degree m.

3. Let X be a generalized principal lattice of degree m in the plane defined by lines
{Lr

i} in Λns. Then there exist lines H,K1, K2 ∈ Λns such that Equation 4.4 holds.

Conditions 4.5 are computationally useful, because the group structures on Λns

satisfying Property ♣ are all of a particularly simple form; they are the direct product
of either the additive group R or the circle group S

1 with one or two of the cyclic
groups Z2 and Z3 [15]. For such groups one easily finds triples (H,K1, K2) satisfying
Conditions 4.5.

The following theorem is a combination of Theorem 3.5 and Corollary 3.6 in [20].
It states that any generalized principal lattice comes from a cubic pencil of lines and
that this pencil is unique whenever the mesh has enough points.

Theorem 14 (Carnicer and Godes). Let X be a generalized principal lattice of degree
m in the plane defined by a family {Lr

i} of lines. There exists a cubic pencil Λ of lines
containing all lines in {Lr

i}. Moreover, Λ is unique if and only if m ≥ 4.
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4.3 A classification

of planar generalized principal lattices

As cubic pencils of lines correspond to cubic curves, it is possible to carry over the
projective classification of real cubic curves to a classification of cubic pencils of lines.
Newton was the first to propose a classification of reduced real cubic curves [62], and
a gentle account can be found in [5]. In [16], Carnicer and Gasca carried out a parallel
classification of the generalized principal lattices in the plane, giving explicit examples
and a geometric interpretation for each class.

In this section we shall present the classification by Carnicer and Gasca, giving
additional details and derivations for each type of generalized principal lattice. The
classification is summarized in Table 4.1. In Section 4.3.1 we state some results about
the duality of curves in the projective plane, which shall be used throughout the re-
mainder of the section. In Sections 4.3.2 and 4.3.3, we shall see that the principal
lattices and 3-pencil lattices correspond to the cubic pencils whose associated curve is
a union of three lines. This was shown explicitly in [15]. Next, Sections 4.3.4 – 4.3.6
contain a discussion of the generalized principal lattices corresponding to the union of
a conic and a line. Finally, Sections 4.3.7 – 4.3.10 discuss generalized principal lattices
corresponding to pencils whose associated curve is irreducible.

4.3.1 The dual correspondence for curves

The dual correspondence for curves is a natural extension of the dual correspondence
between points and lines in the projective plane.

Let C ⊂ P
2 be an irreducible projective curve defined by an equation F (w, x, y) = 0

of degree at least two. The tangent line to a smooth point P = [w0 : x0 : y0] of C is
given by ∂F

∂w
(P )w + ∂F

∂x
(P )x + ∂F

∂y
(P )y = 0. Using the dual correspondence for points

and lines, one obtains a rational map

φ : C ��� P̂
2, P �−→

[
∂F

∂w
(P ) :

∂F

∂x
(P ) :

∂F

∂y
(P )

]
that sends any smooth point P of C to its tangent line in dual space. The Zariski
closure of φ(C) is an irreducible curve in P̂

2 called the dual curve Ĉ of C [82]. The

dual of Ĉ is isomorphic to C [82]. It follows that C and Ĉ are birationally equivalent
and in particular that they have equal geometric genus.

Following [32], we call an irreducible curve C ⊂ P
2 of degree at least two a Plücker

curve, if C and Ĉ have no other singularities than simple nodes and simple cusps.
Irreducible conics and cubics are examples of Plücker curves. Let C ⊂ P

2 be a Plücker
curve of degree d and geometric genus g with δ nodes and κ cusps. Of the dual curve
Ĉ, denote the genus by ĝ, the number of nodes by δ̂, and the number of cusps by κ̂.
We recall the following Plücker formulas [32, 82]:

d̂ = d(d− 1)− 2δ − 3κ, (4.6)

κ̂ = 3d(d− 2)− 6δ − 8κ. (4.7)
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Moreover, by Clebsch’s genus formula,

1

2
(d− 1)(d− 2)− δ − κ = g = ĝ =

1

2
(d̂− 1)(d̂− 2)− δ̂ − κ̂. (4.8)

Any line that is tangent to two points on a curve is called a bitangent of this
curve. Any node on C corresponds to a bitangent on Ĉ and any inflection point on
C corresponds to a cusp on Ĉ (and vice versa). In the remainder of this section, this
correspondence is used to determine the form of the curves dual to reduced irreducible
cubics, culminating in the visual description of planar generalized principal lattices
presented in Table 4.1 (see Section 4.3.10 below).

According to [82, Theorem III.6.3], the inflection points of any projective curve
C : F (w, x, y) = 0 are the nonsingular points of C in the intersection of C with its
Hessian curve

HC : det

⎡⎢⎣
∂2F
∂w2

∂2F
∂w∂x

∂2F
∂w∂y

∂2F
∂x∂w

∂2F
∂x2

∂2F
∂x∂y

∂2F
∂y∂w

∂2F
∂y∂x

∂2F
∂y2

⎤⎥⎦ = 0.

The Hessian curve passes through the singularities of C. By Bezout’s Theorem, one
finds that a cubic can have up to nine (possibly nonreal) inflection points. How many
of these are real depends on the particular curve C. Any nonsingular irreducible cubic
has precisely three real inflection points [5, Ex. III.12.8], while any singular irreducible
cubic has either one or three real inflection points [5, Ex. III.12.18].

Examples with explicit descriptions of the group structures on Cns can be found in
[14–16], and several of the examples in Sections 4.3.2 – 4.3.10 are based upon these.
The classification of the planar generalized principal lattices is summarized in Table
4.1; it will serve as a model for our results in higher-dimensional space.

4.3.2 C reducible, the union of three concurrent lines

Suppose that C is a union of three lines L1, L2, L3 that meet in a single point P . The
dual to C is a union of three vertices v1, v2, v3 lying on the line LP dual to P . Picking
an integer m ≥ 0 and three lines H,K1, K2 �= LP as in Theorem 13.(2), one finds a
generalized principal lattice.

For instance, the lines L1 : x = 0, L2 : y = 0, L3 : x − y = 0 meet in the point
P = [1 : 0 : 0]. The line dual to P is the line at infinity LP : w = 0. Dual to the lines
L1, L2, L3, one has the vertices v1 = [0 : 1 : 0], v2 = [0 : 0 : 1], v3 = [0 : 1 : −1]. The
bijection

φ : R× Z3 −→ Cns, (t, a) �−→

⎧⎨⎩
[−t : 1 : 0] if a = 0;
[−t : 0 : 1] if a = 1;
[ t : 1 : 1] if a = 2

induces a group structure on Cns satisfying Property ♣ [16]. Consider the points

PH :=φ(1, 0) = [−1 : 1 : 0],

PK1 :=φ(0, 1) = [ 0 : 0 : 1],

PK2 :=φ(0, 2) = [ 0 : 1 : 1]
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on Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem
13.(2) for m = 4, one finds a triangular mesh.

P

L
1

L
2

L
3

4.3.3 C reducible, the union of three nonconcurrent lines

Suppose that C is a union of three lines L1, L2, L3 that are not concurrent. Write
{Pk} := Li ∩ Lj whenever {i, j, k} = {1, 2, 3}. The dual to C is the union of three
vertices v1, v2, v3 that do not lie on a line. Picking an integer m ≥ 0 and three lines
H,K1, K2 �= P1, P2, P3 as in Theorem 13.(2), one finds a generalized principal lattice.

For instance, the lines L1 : x = 0, L2 : y = 0, L3 : w = 0 are not concurrent.
Equivalently, the points of intersection P1 = [0 : 1 : 0], P2 = [0 : 0 : 1], P3 = [1 : 0 : 0]
do not coincide. Via the dual correspondence, the lines L1, L2 correspond to vertices
v1, v2 at infinity, while the line L3 corresponds to a vertex v3 in the finite plane. The
bijection φ : R× Z2 × Z3 −→ Cns given by

(t, a, b) �−→

⎧⎨⎩
[ −(−1)ae+t : 1 : 0 ] if b = 0;
[ −(−1)ae−t : 0 : 1 ] if b = 1;
[ 0 : (−1)aet : −1 ] if b = 2

induces a group structure on Cns that satisfies Property ♣ [16]. Consider the points

PH :=φ(1, 0, 0) = [−e : 1 : 0],

PK1 :=φ(0, 0, 1) = [−1 : 0 : 1],

PK2 :=φ(0, 0, 2) = [ 0 : 1 : −1]

on Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem
13.(2) for m = 4, one finds the following 3-pencil lattice.

L
1

L
2

L
3

P
1

P
2

P
3

v
3
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4.3.4 C reducible, the disjoint union of a conic and a line

Suppose that C is the union of a conic C1 and a line L that do not intersect (not at
infinity either). In dual space, the line L corresponds to a vertex v. By Equation 4.6,

the dual Ĉ1 of the conic C1 is a conic as well. Since C1 and L do not intersect, no
line passing through v is a tangent of Ĉ1. This is only possible when v is lying inside
of Ĉ1. Picking an integer m ≥ 0 and three lines H,K1, K2 as in Theorem 13.(2), one
finds three families of m+1 lines; one of these families is contained in the linear pencil
through v, while the other two are tangents to the conic Ĉ1. Together, these 3(m+ 1)
lines define a generalized principal lattice.

Let C = C1 ∪ L be the union of the conic C1 : F (w, x, y) = x2 + y2 − w2 = 0 and
the line L : w = 0 at infinity. The tangent line to the point R = [w0 : x0 : y0] on C1 is
given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y = −2w0w + 2x0x+ 2y0y = 0.

It follows that the triples [a : b : c] = [−2w0 : 2x0 : 2y0] form the conic Ĉ1 : b
2+c2−a2 =

0 in the dual plane. The line L corresponds to the vertex v = [1 : 0 : 0]. The bijection
φ : S1 × Z2 −→ Cns given by

(t, a) �−→
{

[ 0 : sin(t/2) : cos(t/2) ] if a = 0;
[ −1 : cos(t) : sin(t) ] if a = 1

induces a group structure on Cns that satisfies Property ♣ [14,16]. Consider the points

PH :=φ (π/16, 0) = [0 : sin(π/32) : cos(π/32)],

PK1 :=φ (3π/8, 1) = [1 : − cos(3π/8) : − sin(3π/8)],

PK2 :=φ ( 0, 1) = [1 : −1 : 0]

on Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem
13.(2) for m = 3, one finds the following generalized principal lattice.

C
1L

v
̂

C
1

4.3.5 C reducible, the union of a conic and a tangent line

Suppose that C is the union of a conic C1 and a line L tangent to C1 at the point
P . Such a curve C is sometimes called a tangential cubic. In dual space, the line L
corresponds to a vertex v and the point P to a line LP . The dual to C1 is a conic Ĉ1.
Since C1 has degree two, it intersects L only in the point P (but with multiplicity 2).
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The line LP is therefore the only tangent of Ĉ1 that passes through the point v. This
is only possible when v is a point on Ĉ1. Picking an integer m ≥ 0 and three lines
H,K1, K2 �= LP as in Theorem 13.(2), one finds a generalized principal lattice.

For instance, the conic C1 : F (w, x, y) = wy − x2 = 0 and the line L : y = 0
intersect at the point P = [1 : 0 : 0] with multiplicity 2. The tangent line to the point
R = [w0 : x0 : y0] of C1 is given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y = y0w − 2x0x+ w0y = 0.

It follows that the triples [a : b : c] = [y0 : −2x0 : w0] form the conic Ĉ1 : b
2 − 4ac = 0

in the dual plane. The line L corresponds to the vertex v = [0 : 0 : 1] at infinity. The
bijection φ : R× Z2 −→ Cns given by

(t, a) �−→
{

[t : 1 : 0] if a = 0;
[t2 : −t : 1] if a = 1

induces a group structure on Cns that satisfies Property ♣ [14,16]. Consider the points

PH :=φ ( 0.2, 0) = [0.20 : 1.0 : 0],

PK1 :=φ (−0.8, 1) = [0.64 : 0.8 : 1],

PK2 :=φ ( 0.4, 1) = [0.16 : −0.4 : 1]

on Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem
13.(2) for m = 4, one finds a generalized principal lattice.

P

C
1

L

̂

C
1

4.3.6 C reducible, the union of a conic and a secant

Suppose that C is the union of a conic C1 and a line L passing through two distinct
points P,Q of C1. Such a curve C is sometimes called a secant cubic. In dual space,
the line L corresponds to a vertex v, the point P to a line LP , and the point Q to a
line LQ. The dual to C1 is a conic Ĉ1. Since C1 has degree two, it intersects L only

in the points P,Q. The lines LP , LQ are therefore the only tangents of Ĉ1 that pass

through the vertex v. This is only possible when v is a point outside of Ĉ1. Picking
an integer m ≥ 0 and three lines H,K1, K2 �= LP , LQ as in Theorem 13.(2), one finds
a generalized principal lattice.

For instance, let C = C1 ∪ L be the union of the conic C1 : F (w, x, y) = 4xy − w2

and the line L : w = 0 at infinity. The tangent line to C1 at the point R = [w0 : x0 : y0]
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is given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y = −2w0w + 4y0x+ 4x0y = 0.

It follows that the triples [a : b : c] = [−2w0 : 4y0 : 4x0] form the conic Ĉ1 : bc− a2 = 0
in the dual plane. The line L corresponds to the vertex v = [1 : 0 : 0]. The bijection
φ : R× Z2 × Z2 −→ Cns given by

(t, a, b) �−→
{

[ 0 : −(−1)aet : 1 ] if b = 0;
[ −2 : (−1)ae−t : (−1)aet ] if b = 1

induces a group structure on Cns that satisfies Property ♣ [14,16]. Consider the points

PH :=φ ( 0.6, 0, 0) = [ 0 : −e+0.6 : 1 ],

PK1 :=φ (−1.3, 0, 1) = [−2 : e+1.3 : e−1.3],

PK2 :=φ ( 0.7, 0, 1) = [−2 : e−0.7 : e+0.7]

on Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem
13.(2) for m = 2, one finds a generalized principal lattice.

C
1

L

P

Q

v̂

C
1

4.3.7 C irreducible, with an isolated singular point

Suppose that C is an irreducible cubic with an isolated singular point P . Such a point
is also called an acnode, as it corresponds to an ordinary node on the complexification
CC := C ×R SpecC of C. By [23, Theorem 6], such a curve has precisely three real

inflection points. Using Equations 4.6–4.8, we find that the dual curve Ĉ is a quartic
of genus zero without nodes and with three real cusps. It follows that Ĉ is a tricuspidal
quartic with three real cusps.

For instance, let C : F (w, x, y) = (x2 + y2)w + 2xy2 = 0 (cf. [15, §6]). Its Hessian
curve is given by

HC : det

⎡⎣ 0 2x 2y
2x 2w 4y
2y 4y 2w + 4x

⎤⎦ = −16x3 − 8wx2 + 32xy2 − 8wy2 = 0.

Besides the singularity P = [1 : 0 : 0], the intersection C ∩HC contains the real points

of inflection Q1 =
[
1 : −2 :

√
4/3

]
, Q2 =

[
1 : −2 : −

√
4/3

]
, and Q3 = [0 : 0 : 1].

These points correspond to the tangents of three cusps on Ĉ.



64 CHAPTER 4. GENERALIZED PRINCIPAL LATTICES

Let us now explicitly describe Ĉ. The tangent line to C at the point R = [w0 : x0 :
y0] is given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y =

(x20 + y20)w + 2(w0x0 + y20)x+ 2y0(w0 + 2x0)y = 0.

Using Gröbner bases to eliminate the variables w0, x0, y0, for instance with the program
Singular [43], it follows that the triples [a : b : c] =

[
x20+y

2
0 : 2(w0x0+y

2
0) : 2y0(w0+2x0)

]
form the quartic

−8a3b+ 12a2b2 − a2c2 − 6ab3 + 10abc2 + b4 + 2b2c2 + c4 = 0

in the dual plane. The bijection φ : S1 −→ Cns given by

t �−→
{

[ sin(t) : − tan(t/2) : 1 ] if t �= π;
[ 0 : 1 : 0 ] if t = π

induces a group structure on Cns that satisfies Property ♣ [15,16]. Consider the points

PH :=φ

(
1

2

)
=

[
sin

(
1

2

)
: − tan

(
1

4

)
: 1

]
,

PK1 :=φ

(
−5

2

)
=

[
sin

(
−5

2

)
: tan

(
5

4

)
: 1

]
,

PK2 :=φ

(
3

2

)
=

[
sin

(
3

2

)
: − tan

(
3

4

)
: 1

]
on Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem
13.(2) one finds a generalized principal lattice.

Below in the left figure, the solid curve represents C in the finite plane, while the
dashed curve represents HC . Both curves have an isolated singularity at P and pass
through the three inflection points Q1, Q2, Q3 of C (two of which are shown). The
figure to the right shows the generalized principal lattice for H,K1, K2 as above and
m = 3, formed by tangents to the tricuspidal quartic Ĉ.

P

Q
1

Q
2

C HC

̂

C

4.3.8 C irreducible, with a nodal singularity

Suppose that C is an irreducible cubic with an ordinary node P (more precisely, a
crunode). By [23, Theorem 6], such a curve has precisely one real inflection point.
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Using Equations 4.6–4.8, we find that the dual curve Ĉ is a quartic of genus zero with
three cusps, one of which is real, and no other singularities. It follows that Ĉ is a
tricuspidal quartic with one real cusp.

For instance, let C : F (w, x, y) = wy2 − x2(x + w) = 0. Its Hessian curve is given
by

HC : det

⎡⎣ 0 −2x 2y
−2x −2w − 6x 0
2y 0 2w

⎤⎦ = −8wx2 + 8(w + 3x)y2 = 0

Besides the singularity P = [1 : 0 : 0], the intersection C ∩HC contains the real point

of inflection Q = [0 : 0 : 1]. This point corresponds to the tangent of a cusp on Ĉ.

Let us now explicitly describe Ĉ. The tangent line to C at the point R = [w0 : x0 :
y0] is given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y = (y20 − x20)w − (2w0 + 3x0)x0x+ 2w0y0y = 0.

Using Gröbner bases to eliminate the variables w0, x0, y0, it follows that the triples
[a : b : c] = [y20 − x20 : −(2w0 + 3x0)x0 : 2w0y0] form the quartic

Ĉ : 4ab3 − 4b4 + 27a2c2 − 36abc2 + 8b2c2 − 4c4 = 0

in the dual plane. The bijection φ : R× Z2 −→ Cns that sends

(t, a) �−→
[(
1− (−1)aet

)3
: 4(−1)aet

(
1− (−1)aet

)
: 4(−1)aet

(
1 + (−1)aet

)]
induces a group structure on Cns that satisfies Property ♣.

Consider the points PH := φ(1
4
, 0), PK1 := φ(−2, 1), PK2 := φ(3

2
, 1) on Cns, and let

H,K1, K2 be the associated lines in dual space. Applying Theorem 13.(2) one finds a
generalized principal lattice. Below in the left figure, the solid curve represents C in
the chart w = 1, while the dashed curve represents HC . Both curves pass through the
singular point P and the inflection point Q of C at infinity. The figure to the right
shows the generalized principal lattice for H,K1, K2 as above and m = 3, formed by
tangents to the curve Ĉ.

P

CH
C

̂

C

4.3.9 C irreducible, with a cuspidal singularity

Suppose that C is an irreducible cubic with a cusp P . By [23, Theorem 6], such a
curve has precisely one real inflection point. Using Equations 4.6–4.8, we find that the
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dual curve Ĉ is a cubic of genus zero without nodes and with one real cusp. Such a
curve Ĉ is called a semicubical parabola.

For instance, let C : F (w, x, y) = wy2 + x3 = 0. Its Hessian curve is given by

HC : det

⎡⎣ 0 0 2y
0 6x 0
2y 0 2z

⎤⎦ = −24xy2 = 0.

Besides the singularity P = [1 : 0 : 0], the intersection C ∩HC contains the inflection
point Q = [0 : 0 : 1] at infinity. This inflection point corresponds to the tangent of the

cusp of Ĉ.
Let us now explicitly describe Ĉ. The tangent line to C at the point R = [w0 : x0 :

y0] is given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y = y20w + 3x20x+ 2w0y0y = 0.

It follows that the triples [a : b : c] = [y20 : 3x20 : 2w0y0] form the cubic Ĉ : 27ac2−4b3 = 0
in the dual plane. The bijection φ : R −→ Cns given by t �−→ [t3 : −t : 1] induces a
group structure on Cns that satisfies Property ♣ (compare [16]). Consider the points

PH :=φ

(
1

4

)
=

[
1

64
: −1

4
: 1

]
,

PK1 :=φ

(
−3

2

)
=

[
−27

8
:

3

2
: 1

]
,

PK2 :=φ(1) = [1 : −1 : 1]

on Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem
13.(2) one finds a generalized principal lattice.

Below in the left figure, the solid curve represents C in the finite plane, while the
dashed curve represents HC . Both curves pass through the singular point P = [1 : 0 : 0]
and the inflection point Q = [0 : 0 : 1] of C. The figure to the right shows the
generalized principal lattice for H,K1, K2 as above and m = 3, formed by tangents to
the semicubical parabola Ĉ.

C H
C

P

̂

C

4.3.10 C irreducible, smooth

If C is an irreducible and smooth cubic curve, then C has genus 1. Such a curve is also
called an elliptic curve. For this reason, we write E = C in this section.
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Let us briefly recall some facts about elliptic curves. The group law ⊕ that satisfies
Property ♣ turns E into an Abelian variety, as both ⊕ : E×E −→ E and � : E −→ E
are regular maps [75, Theorem III.3.6]. Up to an isomorphism of Abelian varieties, one
distinguishes an infinite number of elliptic curves [74, Theorem V.2.3]. As E is smooth
and as any regular map is built up from polynomial functions, E is a real Lie group
as well. Since there are far more real analytic isomorphisms than there are biregular
maps, one can expect fewer Lie group isomorphism classes of elliptic curves. In fact,
there are only two such classes, and there is an isomorphism of real Lie groups

E �
{

S
1 if Δ(E) < 0;

S
1 × Z2 if Δ(E) > 0,

(4.9)

where the modular discriminant Δ(E) is the discriminant of some Weierstrass equation
of E [74, Corollary V.2.3.1].

After a change of coordinates, any elliptic curve E ⊂ P
2 can be assumed to be of

the form

E : wy2 − 4x3 + g2w
2x+ g3w

3 = wy2 − (x− e1w)(x− e2w)(x− e3w) = 0.

Since E is nonsingular, the discriminant Δ(E) = g32−27g23 is necessarily nonzero. Note
that the sign of Δ(E), and therefore the number of components of E, depends on the
number of real roots of the polynomial h(x) = 4x3 − g2x − g3 = 0. More precisely,
E has two components whenever h has three real roots e1 > e2 > e3, and E has one
component whenever h has one real root e2 and two conjugated nonreal roots e1, e3.

As E has genus 1, it cannot be parameterized by rational functions. However, an
isomorphism as in Equation 4.9 can be given explicitly in terms of elliptic functions.
Let us denote the complexification of any real curve C by attaching the symbol C as
a subindex. That is, CC := C ×R SpecC. Let PC denote the Riemann sphere, and let
u : PC −→ C be the multivalued function defined by the elliptic integral

u(y) =

∫ ∞

y

ds√
4s3 − g2s− g3

.

The function u(y) is multivalued because the value of the integral depends on the choice
of the path. More precisely, every loop around ei will contribute a certain number ωi,
called a period, to the integral (see [46, §9.6] for explicit expressions of ω1, ω2, ω3 in terms
of the equation of EC). By the topology of the Riemann sphere, these periods satisfy the
linear relation ω1+ω2+ω3 = 0. Defining a lattice Λ := {mω1 + nω2 : m,n ∈ Z} ⊂ C,
one finds that u(y) : PC −→ C/Λ is a single-valued function.

One defines the Weierstrass ℘ function, ℘ : C/Λ −→ PC as the inverse function
℘(u) of u(y). An explicit formula for ℘ is

℘(z) = ℘(z;ω1, ω2) =
1

z2
+

∑
(m,n) �=(0,0)

(
1

(z −mω1 − nω2)2
− 1

(mω1 + nω2)2

)
. (4.10)

As an application of Liouville’s theorem, one can show that ℘ satisfies the differential
equation ℘′(z)2 = 4℘(z)3 − g2℘(z) − g3, where moreover the elliptic invariants g2, g3
satisfy

g2 = g2(Λ) := 60
∑

0 �=ω∈Λ

1

ω4
, g3 = g3(Λ) := 140

∑
0 �=ω∈Λ

1

ω6
.
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We thus obtain a map φ : C/Λ −→ EC given by z �−→ [1 : ℘(z) : ℘′(z)]. Because of
the addition formula for Weierstrass ℘ functions,

det

⎡⎣1 ℘(z0) ℘′(z0)
1 ℘(z1) ℘′(z1)
1 ℘(z2) ℘′(z2)

⎤⎦ = 0 ⇐⇒ z0 + z1 + z2 ∈ Λ,

this parameterization is in fact an analytic group isomorphism [46, Theorem 9.4.3]
[75, Corollary VI.5.1.1] [55, §7D].

In case E is defined over R, then one can take the lattice Λ = Zω1 + Zω3 to be
rectangular (that is, ω1 ∈ R and ω3 ∈ iR) [75, Ex. VI.6.7]. Restricting φ to real
numbers and identifying S

1 � R/ω1Z will yield a parameterization φ1 : S1 −→ E of
one connected component of the real elliptic curve E. Note that φ1 is a topological group
isomorphism, in the sense that it is both a homeomorphism and a group isomorphism.

C irreducible, smooth with one real connected component

Suppose that E is an elliptic curve with only one real component. By Equations 4.6–
4.8 the dual curve Ê is a sextic of geometric genus 1 whose only singularities are nine
cusps, three of which are real.

For instance, let E : F (w, x, y) = wy2 − x3 − w3 = 0. Its Hessian curve is given by

HE : det

⎡⎣−6w 0 2y
0 −6x 0
2y 0 2w

⎤⎦ = 24(3w2 + y2)x = 0.

The intersection E ∩HE consists of the inflection points Q1 = [1 : 0 : 1], Q2 = [1 : 0 :

−1], Q3 = [0 : 0 : 1] of E, each of which corresponds to the tangent of a cusp of Ê.

Let us now explicitly describe Ê. The tangent line to E at the point R = [w0 : x0 :
y0] is given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y =

(
y20 − 3w2

0

)
w − 3x20x+ 2w0y0y = 0.

Using Gröbner bases to eliminate the variables w0, x0, y0, it follows that the triples
[a : b : c] = [y20 − 3w2

0 : −3x20 : 2w0y0] form the sextic

Ê : 4a3b3 − 4b6 + 27a4c2 − 36ab3c2 − 54a2c4 + 27c6 = 0

in the dual plane.
If E has only one connected component, then the map φ1 will be a topological

group isomorphism that, by the addition formula for Weierstrass ℘ functions, satisfies
Property ♣. Consider the points PH = φ1(0.1), PK1 = φ1(−1.75), PK2 = φ1(1.63) on
Cns, and let H,K1, K2 be the associated lines in dual space. Applying Theorem 13.(2)
one finds a generalized principal lattice.

Below in the left figure, the solid curve represents E in the finite plane, while the
dashed curve represents HE. Both curves pass through the inflection points Q1, Q2, Q3

of E. The figure to the right shows the generalized principal lattice for H,K1, K2 as
above and m = 2, formed by tangents to the curve Ê.
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E

HE

Q
1

Q
2

̂

E

C irreducible, smooth with two real connected components

Suppose that E is an elliptic curve with two real components. By Equations 4.6–4.8
the dual curve Ê is a sextic of geometric genus 1 with two components whose only
singularities are nine cusps, three of which are real.

For instance, let E : F (w, x, y) = wy2−x3+w2x = 0. Its Hessian curve is given by

HE : det

⎡⎣2x 2w 2y
2w −6x 0
2y 0 2w

⎤⎦ = −8w3 − 24(xw − y2)x = 0.

The intersection E ∩HE comprises the inflection points

Q± =

[
1 :

√
1 +

2√
3
: ±

√
2

4
√
3 + 2

√
3√

3

]
, Q = [0 : 0 : 1].

Each of these inflection points corresponds to the tangent of a cusp of Ê.
Let us now explicitly describe Ê. The tangent line to E at the point R = [w0 : x0 :

y0] is given by

∂F

∂w
(R)w +

∂F

∂x
(R)x+

∂F

∂y
(R)y =

(
y20 + 2w0x0

)
w +

(
w2

0 − 3x20
)
x+ 2w0y0y = 0.

Using Gröbner bases to eliminate the variables w0, x0, y0, it follows that the triples
[a : b : c] =

[
y20 + 2w0x0 : w

2
0 − 3x20 : 2w0y0

]
form the sextic

Ê : 4a3b3 − 4ab5 + 27a4c2 − 30a2b2c2 − b4c2 − 24abc4 − 4c6 = 0

in the dual plane. The map φ1 from the previous section yields a parameterization
of one component of E. The other component can be parameterized by the map
φ2 : R/ω1Z −→ E given by t �−→ φ(t+ 1

2
ω3), as Equation 4.10 implies that ℘(t+ 1

2
ω3)

and ℘′(t+ 1
2
ω3) are real for all real t. Identifying R/ω1Z with S

1, one finds a topological
group isomorphism ψ : S1 × Z2 −→ E defined by the rule

(t, a) �−→
{
φ1(t) if a = 0;
φ2(t) if a = 1

,

which shows that E satisfies Property ♣. Consider the points PH := φ(0.12, 0), PK1 :=
φ(−0.7, 1), PK2 := φ(0.5, 1) on Cns, and let H,K1, K2 be the associated lines in dual
space. Applying Theorem 13.(2) one finds a generalized principal lattice.
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Below in the left figure, the solid curve represents E in the finite plane, while the
dashed curve represents HE. Both curves pass through the inflection points Q+, Q−, Q
of E. The figure to the right shows the generalized principal lattice for H,K1, K2 as
above and m = 3, formed by tangents to the curve Ê.

E

HE

Q
+

Q
−

̂

E
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4.4 Generalized principal lattices in space

In this section we construct generalized principal lattices in higher-dimensional pro-
jective space. Our discussion will mainly focus on generalized principal lattices in
3-dimensional projective space, but we remark that many of the techniques we apply
can be seen to work in any higher-dimensional projective space.

In Section 4.4.1, we introduce some basic notation, define generalized principal
lattices in n-dimensional projective space for arbitrary n, and give two examples. In the
next section, we remark that all known examples of generalized principal lattices in n-
dimensional projective space correspond to a curve of degree n+1 and arithmetic genus
1. Moreover, in 3-dimensional projective space, the curves are always the complete
intersection of two quadrics. We subsequently ask the question whether, conversely,
any such curve define generalized principal lattices of arbitrary high degree. Section
4.4.3 recalls two properties P1 and P2 for families of parameterized curves from [17],
which can be used as a technical tool for showing that these curves defines generalized
principal lattices of arbitrary degree. In Section 4.4.4, we recall the classification of
complete intersections of quadrics in complex 3-dimensional project space, and single
out the types that have the potential to define generalized principal lattices. In Sections
4.4.5 – 4.4.9, we transform each of these curve types into a normal form by means of a
real projective change of coordinates and find a parameterization satisfying Properties
P1, P2. The resulting classification is summarized in Table 4.4.

4.4.1 Definition, notation, and examples

In this section, we define the notion of a generalized principal lattice in higher-dimensional
projective space and introduce some notation needed for the remainder of the chapter.
We end the section with two simple examples.

For any m ≥ 0 and n ≥ 2, the set

Sn
m :=

{
(i0, i1, . . . , in) : i0, i1, . . . , in ∈ {0, 1, . . . ,m}, i0 + i1 + · · ·+ in = m

}
will function as an index set for the points of a generalized principal lattice. For any
n ≥ 1, the symbol Pn represents the real projective space of dimension n, and the
symbol P̂n represents its dual space. Similarly, the symbol Pn

C
represents the complex

projective space of dimension n and the symbol P̂n
C
its dual space. Both spaces come

equipped with projective coordinates [x0 : x1 : · · · : xn], which we denote by [w : x :
y : z] for the case n = 3. Usually, we think of Rn (respectively C

n) as lying inside of
P
n (respectively P

n
C
) by means of the injection (x1, . . . , xn) −→ [1 : x1 : · · · : xn]. The

remaining points in P
n (respectively P

n
C
) form the hyperplane x0 = 0, which is called

the hyperplane at infinity. By contrast, the points in R
n (respectively C

n) are called
the finite points in P

n (respectively P
n
C
). Moreover, we think of Pn as lying inside P

n
C
,

via the trivial injection

P
n −→ P

n
C
, [x0 : x1 : · · · : xn] �−→ [x0 : x1 : · · · : xn].

Now the formalities are out of the way, let us get to business. The following defi-
nition is the straightforward generalization of Definition 11 taken from [17, Definition
1].
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Definition 15 (generalized principal lattice in P
n). Let m ≥ 0, n ≥ 2 and consider

n+ 1 families

H0
0 , H

0
1 , . . . , H

0
m, H1

0 , H
1
1 , . . . , H

1
m, . . . , Hn

0 , H
n
1 , . . . , H

n
m

of m + 1 hyperplanes in P
n, for which any two of the (n + 1)(m + 1) hyperplanes are

distinct. Suppose that

GPL′
1 Any intersection Hr1

i1
∩Hr2

i2
∩· · ·∩Hrn

in
, corresponding to distinct indices 0 ≤ r1 <

r2 < · · · < rn ≤ n, consists of exactly one point.

GPL′
2 The intersection H0

i0
∩H1

i1
∩ · · · ∩Hn

in �= ∅ whenever (i0, i1, . . . , in) ∈ Sn
m.

Under these assumptions, the set of points

X :=
{
xi : H0

i0
∩H1

i1
∩ · · · ∩Hn

in = {xi}, i = (i0, i1, . . . , in) ∈ Sn
m

}
(4.11)

is a generalized principal lattice of degree m in P
n if, additionally,

GPL′
3 For any i0, i1, . . . , in ∈ {0, 1, . . . ,m},

H0
i0
∩H1

i1
∩ · · · ∩Hn

in ∩X �= ∅ =⇒ (i0, i1, . . . , in) ∈ Sn
m.

In this case, we say that the n+1 families Hr = {Hr
0 , H

r
1 , . . . , H

r
m} ofm+1 hyperplanes

define a generalized principal lattice of degree m in P
n.

We proceed with constructing two important examples of generalized principal lat-
tices in P

n.

Example 8 (triangular meshes in R
n). Let us reconstruct the motivating example of

a generalized principal lattice in P
n, namely that of a triangular mesh of degree m in

R
n. Following our convention, we identify R

n with the chart x0 = 1 of Pn. We verify
that the hyperplanes

H0
i : x1 + · · ·+ xn − (m− i)x0 = 0,

Hr
i : xr − ix0 = 0, r = 1, . . . , n, i = 0, . . . ,m,

satisfy the conditions of Definition 15.
Consider any intersection I := Hr1

i1
∩ Hr2

i2
∩ · · · ∩ Hrn

in
corresponding to distinct

indices 0 ≤ r1 < r2 < · · · < rn ≤ n. For any point [1 : x1 : · · · : xn] ∈ I, one
has xrj = ij for j = 2, . . . , n. The remaining coordinate is fixed by the equation of
Hr1

i1
. We conclude that the hyperplanes {Hr

i } satisfy Property GPL′
1. Moreover, the

intersection H0
i0
∩H1

i1
∩ · · · ∩Hn

in is nonempty if and only if

0 = det

⎡⎢⎢⎢⎢⎢⎣
i0 −m 1 1 · · · 1
−i1 1 0 · · · 0
−i2 0 1 · · · 0
...

...
...

. . .
...

−in 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ = i0 + i1 + · · ·+ in −m,
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(a) (b)

Figure 4.4: Figure (a) shows the triangular mesh of degree 2 in R
3 together with its

3+1 families of 2+1 hyperplanes. Figure (b) shows the lines L0, L1, L2, L3 in dual space
together with the points pri (except for the points p

0
m, p10, p

2
0, and p30, which lie at infinity).

implying PropertiesGPL′
2 andGPL′

3. We conclude that any triangular mesh of degree
m in R

n is a generalized principal lattice of degree m in P
n.

In a triangular mesh in R
n, each family Hr = {Hr

0 , H
r
1 , . . . , H

r
m} is contained in

a pencil Pr of hyperplanes. For r �= 0, the pencil Pr is spanned by the hyperplanes
x0 = 0 and xr = 0, while for r = 0 it is spanned by the hyperplanes x0 = 0 and
x1 + x2 + · · · + xn = 0. Via the dual correspondence, each hyperplane Hr

i in P
n

corresponds to a point pri in P̂
n. Moreover, the base locus of the pencil Pr corresponds

to a line Lr in P̂
n, with

L0 =
{
[α : β : β : · · · : β] ∈ P̂

n : [α : β] ∈ P
1
}
,

L1 =
{
[α : β : 0 : · · · : 0] ∈ P̂

n : [α : β] ∈ P
1
}
,

...

Ln =
{
[α : 0 : 0 : · · · : β] ∈ P̂

n : [α : β] ∈ P
1
}
.

As each pencil contains the hyperplane x0 = 0 at infinity, the lines L0, L1, . . . , Ln meet
in the point [1 : 0 : · · · : 0] ∈ P̂

n.
Figure 4.4a shows the triangular mesh in R

3 with m = 2. Planes of the same color
form a family Hr that is part of a pencil Pr with base locus at infinity. For each pencil
Pr, the corresponding line Lr is drawn with the same color in 4.4b, together with the
points pri visible in the finite plane.

Example 9 ((n+1)-pencil lattices). Analogously to the planar case, one can consider
more general configurations of pencils of hyperplanes. The planar principal lattices
discussed in Section 4.1, for instance, can without difficulty be generalized to higher-
dimensional projective space. More generally, Lee and Phillips introduced the notion
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of an (n + 1)-pencil lattice [53]. Although principal lattices are strictly speaking not
(n + 1)-pencil lattices, it is shown in [53, Section 4] that the principal lattices are
recovered from the (n + 1)-pencil lattices as a degenerate case. We proceed to show
Lee and Phillips’ construction in a special case, from which any other (n + 1)-pencil
lattice can be obtained by means of a real projectivity of Pn.

Let y0 := [1 : 0 : · · · : 0], y1 := [0 : 1 : · · · : 0], . . . , yn := [0 : 0 : · · · : 1] be the
vertices of the simplex of reference in P

n. Here the indices are considered cyclically,
so that for instance y−1 = yn. Let Pr be the pencil of hyperplanes passing through
{y0, y1, . . . , yn}\{yr−1, yr}. In other words, any hyperplane in Pr is the zeroset of a
linear form αxr−1 + βxr for some [α : β] ∈ P

1. Let m be any nonnegative integer
and μ �= 0, 1 a real number. Consider the n + 1 families Hr = {Hr

0 , H
r
1 , . . . , H

r
m},

r = 0, 1, . . . , n, of hyperplanes defined by

H0
i : x0 − μm−ixn = 0,

Hr
i : xr−1 − μixr = 0, i = 0, 1, . . . ,m, r = 1, . . . , n.

Let us show that these hyperplanes satisfy the conditions of Definition 15. The
intersection of any n+ 1 hyperplanes H0

i0
, H1

i1
, . . . , Hn

in is nonempty if and only if

0 = det

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · −μm−i0

1 −μi1 0 · · · 0

0 1 −μi2 . . .
...

...
. . . . . . . . . 0

0 · · · 0 1 −μin

⎤⎥⎥⎥⎥⎥⎦ = (−1)n
(
μi1+···+in − μm−i0

)
,

which happens precisely when i0 + i1 + · · · + in = m, implying Properties GPL′
2 and

GPL′
3. Since any n rows in the above matrix are linearly independent, the hyperplanes

{Hr
i } satisfy Property GPL′

1. The (n + 1)-pencil lattice associated with {Hr
i } is the

set X from (4.11) explicitly given by

X =
{[

1 : μ−α1 : μ−α1−α2 : · · · : μ−α1−···−αn
]
: (α0, α1, . . . , αn) ∈ Sn

m

}
.

4.4.2 What curves give rise to a generalized principal lattice?

Both for the triangular mesh in R
n and the (n+1)-pencil lattice in P

n, the points dual
to the hyperplanes {Hr

i } lie on the union of n + 1 lines. This leads to the following
question. What if we consider other projective curves C ⊂ P

n of degree n+ 1, can we
do the same as in the planar case? More precisely, we wish to investigate when such a
curve C has the following property.

� For any nonnegative integerm, there exist n+1 families ofm+1 points on C such
that the corresponding hyperplanes in dual space define a generalized principal
lattice of degree m in P̂

n in the sense of Definition 15.

Clearly, Property � does not hold for every curve C ⊂ P
n of degree n + 1. In

the examples below, suppose C ⊂ P
3 contains points pri , with i = 0, 1, . . . ,m and

r = 0, 1, . . . , n, such that the corresponding planesHr
i in dual space define a generalized

principal lattice X of degree m in P̂
3.
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Example 10. Suppose that C is degenerate, in the sense that it is contained in a plane.
Then all of its points will obviously be coplanar, and the planes Hr

i will all meet in the

same point, which is a generalized principal lattice of degree 0 in P̂
3. In other words,

Property � does not hold for m ≥ 1 for such a curve.

Example 11. Suppose that C is not reduced, in the sense that it is set-theoretically
equivalent to a reduced curve C ′ of degree lower than 4. By definition of the degree of
a projective curve, a plane will either intersect C ′ in fewer than 4 points, or contain
a whole component of C ′. In the former case, there will be no four independent
hyperplanes that meet in a point of X, while the latter case contradicts Condition
GPL′

3 for large enough m.

So which curves do have Property �? A partial answer to this question was given
in [17]. In this paper, Carnicer, Gasca, and Sauer find many examples of generalized
principal lattices in P

n (of the types (c), (d), (e), (i), (j), (k) in Table 4.4), by applying
the theory of Haar systems to find compatible 1-parameter families of hyperplanes.
These families are parameterized by the topological groups R, R × Z2, and S

1. They
explicitly state that they do not claim to cover all possibilities, and there are indeed
many types missing already in the case n = 3.

The examples in [17] provide us with a clue where to look for generalized principal
lattices in P

3. In each example, the 1-parameter families of hyperplanes form a curve
in dual space that is the complete intersection of two quadric surfaces. It is well known
that such a curve is of degree 4 and arithmetic genus 1 [45, Exercise I.7.2d]. This is
comparable to the classification of the planar generalized principal lattices from Table
4.1, where each curve is a of degree 3 and arithmetic genus 1.

The goal of the remainder of this chapter is to answer the following question.

Question 16. Which curves C ⊂ P
3 that are the complete intersection of two quadrics

satisfy Property �, and how can we explicitly construct generalized principal lattices
from these?

In the next section, we show how one can equip such curves with additional structure
to keep track of coplanarity of its points, similar to how the group law for cubic curves
exhibited in Theorem 12 keeps track of collinearity.

4.4.3 Encoding cohyperplanarity

In this section, we recall from [17] a sufficient criterion for a curve C ⊂ P
n of degree

n+ 1 to satisfy Property �. Let Cns denote the nonsingular part of C.
Let us consider an example to show that the situation for space quartics differs

from that of planar cubics. Let C be the union of the twisted cubic C ′ and the tangent
line L to some point P ∈ C ′. Then Cns will be homeomorphic to the disjoint union
of two copies of the real line R. By Proposition 18 in [54], any topological Abelian
group with this topology is isomorphic to R×Z2. Suppose we are given four points on
Cns, three of which lie on C ′ and one on L. Whether these four points are coplanar or
not, the corresponding points in R × Z2 can never sum to (0, 0). Yet in Section 4.4.7
it is shown that the curve C satisfies Property �. We cannot, therefore, in general
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expect the existence of a group law on Cns that encodes coplanarity the way Property
♣ encodes collinearity for planar curves.

In [17], a different method for finding generalized principal lattices in P
n is proposed.

For any Abelian group G and any n + 1 families of hyperplanes Hr =
{
Hr(ω) : ω ∈

G
}
, r = 0, 1, . . . , n, satisfying two compatibility conditions, they present a way to pick

(m + 1) hyperplanes Hr
0 , H

r
1 , . . . , H

r
m from each family Hr so that the set X defined

by Equation 4.11 is a generalized principal lattice of degree m in P
n. Using the theory

of Haar systems, they find many examples of such compatible families of hyperplanes
and of corresponding generalized principal lattices.

Let us present the projective dual of this construction. For any Abelian group G
and n+ 1 parameterized curves

χr : G −→ Cr ⊂ P̂
n, r = 0, 1, . . . , n,

some of which may coincide, we introduce the following two properties.

P1 Any distinct points χr1(g1), χr2(g2), . . . , χrn(gn) corresponding to distinct indices
0 ≤ r1 < r2 < · · · < rn ≤ n span a hyperplane.

P2 Any distinct points χ0(g0), χ1(g1), . . . , χn(gn) lie in a hyperplane if and only if
g0 + g1 + · · ·+ gn = 0.

The following proposition is the dual version of Proposition 5 in [17], and it shows how
one can construct generalized principal lattices of any degree from such a system of
curves.

Proposition 17. Let be given an Abelian group G and n+1 parameterized curves χr :
G −→ Cr ⊂ P̂

n, r = 0, 1, . . . , n, satisfying properties P1 and P2. Let g0, g1, . . . , gn, δ ∈
G be such that g0 + g1 + · · ·+ gn +mδ = 0. If the (n+ 1)(m+ 1) points

pri := χr(gr + iδ), i = 0, 1, . . . ,m, r = 0, 1, . . . , n,

are distinct, then the corresponding hyperplanes in dual space define a generalized prin-
cipal lattice of degree m in P

n.

As an example, let us try to reconstruct the triangular mesh in R
3 in this setting.

Let G = R and let be given the parameterized curves

χ0 : R −→ C0 ⊂ P̂
3, t �−→ [+t : 1 : 1 : 1],

χ1 : R −→ C1 ⊂ P̂
3, t �−→ [−t : 1 : 0 : 0],

χ2 : R −→ C2 ⊂ P̂
3, t �−→ [−t : 0 : 1 : 0],

χ3 : R −→ C3 ⊂ P̂
3, t �−→ [−t : 0 : 0 : 1].

The Zariski closures of these curves are lines in P̂
3 that meet in the point [1 : 0 : 0 : 0],

the only point not in the image of the parameterizations. Clearly any distinct points
χr1(t1), χr2(t2), χr3(t3) corresponding to distinct indices 0 ≤ r1 < r2 < r3 ≤ 3 are
linearly independent, implying that Property P1 holds for these parameterized curves.
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Moreover, any distinct points χ0(t0), χ1(t1), χ2(t2), χ3(t3) lie in a hyperplane if and only
if

0 = det

⎡⎢⎢⎣
+t0 1 1 1
−t1 1 0 0
−t2 0 1 0
−t3 0 0 1

⎤⎥⎥⎦ = t0 + t1 + t2 + t3,

implying that Property P2 holds. Let t0 = −m, t1 = t2 = t3 = 0, and δ = 1, so that
t0 + t1 + t2 + t3 +mδ = 0. Define, for i = 0, 1, . . . ,m, the points

p0i := χ0(t0 + iδ) = χ0(i−m) = [i−m : 1 : 1 : 1],

p1i := χ1(t1 + iδ) = χ1(i) = [−i : 1 : 0 : 0],

p2i := χ2(t2 + iδ) = χ2(i) = [−i : 0 : 1 : 0],

p3i := χ3(t3 + iδ) = χ3(i) = [−i : 0 : 0 : 1].

Then these points pri are distinct, and the associated planes

H0
i : x1 + x2 + x3 + (i−m)x0 = 0,

H1
i : x1 − ix0 = 0, H2

i : x2 − ix0 = 0, H3
i : x3 − ix0 = 0

in dual space define the triangular mesh of degree m in R
3 (compare Figures 4.4a and

4.4b).

4.4.4 Pencils of quadrics in space

In order to answer Question 16, we need to know a bit more about the intersection of
two quadrics in P

3. In this section, we briefly recall some definitions and facts from
the theory of quadratic forms and pencils of quadrics in P

n, for n ≥ 2.
Any quadric hypersurface Q ⊂ P

n can be represented by an (n + 1) × (n + 1)
symmetric matrix M , unique up to scalar multiplication, as the zeroset Q =

{
x ∈ P

n :
xtMx = 0

}
. The rank of the quadric Q is the rank of any representing matrixM . One

verifies directly that Q is singular if and only if M is singular. In fact, the singular
locus of Q coincides with the kernel of M .

How is such a representation affected by a projective change of coordinates? Any
projectivity P

n −→ P
n can be represented by an (n + 1) × (n + 1) invertible matrix

A, unique up to scalar multiplication, as a map x �−→ y with Ay = x. One finds that,
in terms of the new coordinates y = A−1x, the quadric Q : xtMx = ytAtMAy = 0 is
represented by the matrix AtMA. Since M is symmetric, there always exists a real
projectivity with orthogonal matrix A for which AtMA is a real diagonal matrix (see
[68, Theorem 10.19]).

Let X ⊂ P
n be the complete intersection of two quadric hypersurfaces Q1, Q2 ⊂ P

n.
For any nonsingular matrix[

λ1 λ2
μ1 μ2

]
, (4.12)
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the variety X can equally well be represented as the complete intersection of the
quadrics λ1Q1 + λ2Q2 and μ1Q1 + μ2Q2, where we denote a quadric hypersurface
and its quadratic form by the same symbol. To remove this ambiguity, we consider the
pencil of quadrics P = {λ1Q1 + λ2Q2 : [λ1 : λ2] ∈ P

1} and define X as the base locus⋂
Q∈P Q. In this case, we say that P is generated by Q1 and Q2.
To examine all possible base loci obtained in this way, we sometimes need to consider

the complexification of P , which is simply the set PC of all complex linear combinations
of the equations of the quadrics in P . That is, for P generated by Q1 and Q2,

PC =
{
λ1Q1 + λ2Q2 : [λ1 : λ2] ∈ P

1
C

}
.

Consider a pencil P generated by two quadrics Q1, Q2 whose general member is
a nonsingular quadric. One defines the discriminant of the pair (Q1, Q2) as Δ :=
det(sQ1 + tQ2), which is a homogeneous form in the coordinates [s : t] on P

1 of
degree 4. Whenever Q2 is nonsingular, Δ is, up to multiplication by a scalar, the
characteristic polynomial of Q1Q

−1
2 in the variable λ := −t/s. Every singular quadric

in the pencil P corresponds to a factor of Δ, and we can define the multiplicity of each
singular quadric in P as the multiplicity of this factor in Δ. Note that this definition
is independent of the choice of the generators Q1, Q2 of P . The multiplicity will be
useful in distinguishing projectively inequivalent pencils in Table 4.4.

The pencils PC of quadric hypersurfaces in P
n
C
with nonsingular general member are

classically classified in terms of the Segre characteristic [8, Section III.18] [81, Section
6.5], which is defined as follows. Let PC be any pencil of quadrics in P

n
C
generated by

two linearly independent quadrics Q1 : x
tM1x = 0 and Q2 : x

tM2x = 0, of which Q2 is
nonsingular. Suppose that the matrix Q1Q

−1
2 has eigenvalues λ1, . . . , λk with algebraic

multiplicitiesm1, . . . ,mk. Additionally, suppose that the Jordan normal form of Q1Q
−1
2

has, corresponding to each of its eigenvalues λi, li Jordan blocks⎡⎢⎢⎢⎢⎢⎢⎣
λi 1 0 · · · 0

0 λi 1
. . .

...

0 0 λi
. . . 0

...
. . . . . . . . . 1

0 · · · 0 0 λi

⎤⎥⎥⎥⎥⎥⎥⎦
with sizes s1i ≥ s2i ≥ · · · ≥ slii . Then the Segre characteristic of PC, or characteristic
for short, is defined as the symbol[(

s11s
2
1 · · · sl11

)(
s12s

2
2 · · · sl22

)
· · ·

(
s1ks

2
k · · · slkk

)]
,

where we leave out the parentheses for eigenvalues with only one Jordan block (c.f.
[81, Section 5.5]). This definition can be shown to be independent of the choice of the
generators Q1 and Q2 of a given pencil. For instance, if n = 3 and Q1Q

−1
2 has Jordan

normal form⎡⎢⎢⎣
λ1 1 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ2

⎤⎥⎥⎦ , λ1 �= λ2,
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characteristic description of the pencil and its base locus

[1111]
an elliptic normal curve
four distinct cones in the pencil with vertices in general position

[211]
a nodal quartic
all quadrics touch at the node

[31]
a cuspidal quartic
the quadrics have stationary contact at the cusp

[22]
a twisted cubic and a secant
the quadrics touch at the points of intersection

[4] a twisted cubic and a tangent

[(111)1]
a double conic
all quadrics touch along the conic (ring contact)

[(11)11]
two conics in different planes and meeting in two distinct points
all quadrics touch at these points

[(21)1]
two conics in different planes and meeting tangentially
all quadrics have stationary contact at the point of contact

[2(11)]
two lines and a conic intersecting at three points,
at which the quadrics touch

[(31)] two lines and a conic touching the plane of the lines at the intersection

[(211)]
two intersecting lines counted twice
all quadrics touch along these lines

[(22)] a double line meeting two (single) lines at distinct points

[(11)(11)] four lines arranged as a skew quadrilateral

Table 4.2: Complex equivalence classes of complex pencils of quadric surfaces in P
3 with

nonsingular general member by Segre characteristic. (The Segre characteristic [(1111)]
is omitted, as it does not correspond to a proper pencil.)

then the corresponding Segre characteristic is [(21)1].
Consider pencils PC generated by quadrics Q1, Q2 ⊂ P

n
C

and P ′
C

generated by
quadrics Q′

1, Q
′
2 ⊂ P

n
C
, where

Qi : x
tMix = 0, Q′

i : x
tM ′

ix = 0, Mi,M
′
i ∈ C

(n+1)×(n+1), i = 1, 2.

The pencils PC and P ′
C
are said to be complex equivalent, if there exists a complex

projectivity of Pn
C
with matrix A ∈ C

(n+1)×(n+1) such that M ′
1 = AtM1A and M ′

2 =
AtM2A. Similarly, real pencils are said to be real equivalent whenever they can be
transformed into each other by a real projective change of coordinates. From [81,
Section 6.4] we have the following theorem.

Theorem 18. Two pencils PC and P ′
C
of quadrics in P

n
C
with nonsingular general

member are complex equivalent if and only if their Segre characteristics coincide.

Let us apply this result to the case n = 3. From [81, Sections 6.5] and [8, Section
III.18], it is known that the pencils of quadric surfaces in P

3
C
with nonsingular general



4.4. GENERALIZED PRINCIPAL LATTICES IN SPACE 81

characteristic description of the pencil and its base locus figure

[111]
four points of intersection,
no three of which are collinear

[21]
three points of intersection,
all quadrics have simple contact at one of them

[(11)1]
two points of intersection,
all quadrics have simple contact at both of them

[3]
two points of intersection,
at one of which all quadrics have contact of the second order

[(21)]
one point of intersection,
at which all quadrics have contact of the third order

Table 4.3: Complex equivalence classes of complex pencils of conics in P
2 with non-

singular general member by Segre characteristic. (The Segre characteristic [(111)] is
omitted, as it does not correspond to a proper pencil.)

member are as in Table 4.2. What about the remaining case of pencils whose general
member is singular? Whenever a pencil PC contains a nonsingular quadric Q1, then
continuity of the determinant function ensures that PC contains a continuous family of
nonsingular quadrics {Q1 + tQ2}t∈(0,ε) for some other quadric Q2 ∈ PC and for some
ε > 0. It follows that the discriminant of Q1 and Q2 is well defined and that PC

contains at most four singular quadrics. If PC is a pencil whose general member is
singular, therefore, all of its members must be singular. From [8, Section III.17.5] we
have the following theorem.

Theorem 19. Let PC be a pencil of singular quadrics, no two of which have a singular
point in common. Then these vertices lie along a straight line L that is contained in
each of the cones, and the cones have a common tangent plane along L. The base locus
of PC is the union of the double line L and a conic.

If, on the other hand, PC is a pencil of singular quadrics in which two quadrics
share a singular point, then this point must be a singularity of the other quadrics in
PC as well. After a projective change of coordinates, we can assume this point to be
[0 : 0 : 0 : 1]. Then each quadric in PC is represented by a matrix of the form⎡⎢⎢⎣

∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 0

⎤⎥⎥⎦ ,
and the study of pencils of this type reduces to the study of pencils of conics in P

2. By
[81, Section 6.3] and [8, Section III.15], it follows that the base locus of PC is either
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the cone over one of the configurations of points of Table 4.3, or the cone over the base
locus of a pencil of conics in P

2
C
with singular general member.

The situation is slightly more complicated over the real numbers, as two pencils
with the same Segre characteristic might not be related by a real projective change
of coordinates. Every complex equivalence class of pencils is partitioned into real
equivalence classes of pencils. This gives rise to real curves of different type but with
equal Segre characteristic.

Which of the base loci in Tables 4.2 and 4.3 do not have the potential to satisfy
property �? Any double conic (characteristic [(111)1]) or intersection of two double
lines (characteristic [(211)]) is contained in a plane and can therefore not satisfy Prop-
erty � by Example 10. Moreover, a double line meeting two single lines at distinct
points (characteristic [(22)]), the singular case of Theorem 19, the cones over the con-
figurations with at most three points in Table 4.3

(
characteristics [21], [(11)1], [3], and

[(21)]
)
, and the cones over the base locus of a pencil of conics in P

2
C
with singular gen-

eral member are not reduced. By Example 11, they can therefore not satisfy Property
�.

In Section 4.4.5, we exhibit two continuous families of parameterized real elliptic
normal curves, each of which satisfies Properties P1 and P2. In Sections 4.4.6 –
4.4.9, we obtain for each of the remaining base loci C a convenient coordinate system,
in which we can find parameterizations of the components of C satisfying Properties
P1 and P2. In each case, Proposition 17 implies that C satisfies Property �. These
results are summarized in Table 4.4.

4.4.5 Elliptic normal curves

Just like one can equip any real plane elliptic curve with a group structure that encodes
collinearity of its points, one can embed any real elliptic curve into P

n in such a way
that its group structure encodes cohyperplanarity of its points. From [75, Ex. 3.11],
we have the following proposition in the complex case.

Proposition 20. Let EC be an elliptic curve with distinguished point O, and choose a
basis f0, . . . , fn for the Riemann-Roch space L

(
(n+ 1)O

)
. For n ≥ 2, the map

χ : EC −→ P
n, t �−→ [f0(t) : · · · : fn(t)]

is an isomorphism of EC onto its image that embeds EC as an elliptic normal curve
of degree n + 1. Moreover, identifying EC with its image, any n + 1 distinct points
P0, . . . , Pn ∈ EC lie in a hyperplane if and only if P0 ⊕ · · · ⊕ Pn = O.

Let EC be an elliptic curve isomorphic to the torus C/Λ, where Λ = ω1Z ⊕ ω2Z.
The space L

(
(n + 1)O

)
is the vector space of meromorphic functions on EC with a

pole of order at most n + 1 at O and no other poles. Let ℘(z) be the Weierstrass
function associated to Λ. As the meromorphic functions on EC form a field isomorphic
to C

(
℘(z), ℘′(z)

)
[75, Theorem VI.3.2], one can write down a basis for L

(
(n+ 1)O

)
in

terms of ℘(z) and ℘′(z). Keeping in mind that ℘′2 = 4℘3 − g2℘− g3 and that ℘(i) has
a pole of order i+ 2 at zero, one finds a basis {f0, . . . , fn} = {1, ℘, ℘′, ℘2, ℘′℘, ℘3, . . .}.

Alternatively, we can choose the basis {f0, . . . , fn} =
{
1, ℘, ℘′, . . . , ℘(n−1)

}
of L

(
(n+

1)O
)
. Distinct points χ(z0), χ(z1), . . . , χ(zn) of χ(EC) lie in a hyperplane if and only
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they are linearly dependent. Multiplying the coordinates of χ(z) by zn+1, we remove
the poles without introducing additional zeros. The following proposition is a general-
ization of the General Addition Theorem for Weierstrass functions.

Proposition 21. Let ℘(z) = ℘(z; Λ) be the Weierstrass elliptic function with respect
to some lattice Λ ⊂ C. Then, for any complex numbers z0, z1, . . . , zn not differing from
each other by an element of Λ,

Δ := det

⎡⎢⎢⎢⎢⎢⎣
zn+1
0 zn+1

0 ℘(z1) zn+1
0 ℘′(z0) · · · zn+1

0 ℘(n−1)(z0)
zn+1
1 zn+1

1 ℘(z2) zn+1
1 ℘′(z1) · · · zn+1

1 ℘(n−1)(z1)
zn+1
2 zn+1

2 ℘(z3) zn+1
2 ℘′(z2) · · · zn+1

2 ℘(n−1)(z2)
...

...
...

. . .
...

zn+1
n zn+1

n ℘(zm) zn+1
n ℘′(zn) · · · zn+1

n ℘(n−1)(zn)

⎤⎥⎥⎥⎥⎥⎦ = 0 (4.13)

if and only if z0 + z1 + · · ·+ zn ≡ 0 mod Λ.

Before we proceed with the proof, we introduce, following [86, p. 447], the Weier-
strass sigma function as the Weierstrass product

σ(z) = σ(z; Λ) := z
∏

0 �=ω∈Λ

[(
1− z

ω

)
exp

(
z

ω
+
z2

ω2

)]
,

which can be shown to converge absolutely and uniformly in any bounded domain of

values of z. Then ℘(z) = −d2 log σ(z)
dz2

. One can show that σ(z) is an entire function
whose zeros are located at the lattice points ω ∈ Λ, each of which has order one.

Any elliptic function can be factorized into a product and quotient of σ functions
[50, p. 406]. The idea of the proof below is to use such a factorization for the elliptic
function Δ/

(
zn+1
0 zn+1

1 · · · zn+1
n

)
to get ahold of its zeros.

Proof. From [86, p. 458] and [37, p. 179], we have the Frobenius-Stickelberger addition
formula

det

⎡⎢⎢⎢⎢⎢⎣
1 ℘(z0) ℘′(z0) · · · ℘(n−1)(z0)
1 ℘(z1) ℘′(z1) · · · ℘(n−1)(z1)
1 ℘(z2) ℘′(z2) · · · ℘(n−1)(z2)
...

...
...

. . .
...

1 ℘(zn) ℘′(zn) · · · ℘(n−1)(zn)

⎤⎥⎥⎥⎥⎥⎦
= (−1)n(n−1)/21!2! · · ·n! σ(z0 + z1 + · · ·+ zn)(

σ(z0)σ(z1) · · · σ(zn)
)n+1

∏
0≤i<j≤n

σ(zi − zj)

for any n ≥ 0. In particular for z0, z1, . . . , zn as in the proposition, the determinant Δ
from Equation 4.13 vanishes if and only if(

z0z1 · · · zn
σ(z0)σ(z1) · · · σ(zn)

)n+1

σ(z0 + z1 + · · ·+ zn)
∏

0≤i<j≤n

σ(zi − zj) = 0.

Since σ(z) is an entire function with only zeros of order one at z ≡ 0 mod Λ, the quo-
tient z0z1···zn

σ(z0)σ(z1)···σ(zn) and factors σ(zi − zj) are nonzero complex numbers. We conclude
that Δ vanishes if and only if z0 + z1 + · · ·+ zn ≡ 0 mod Λ.
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Let us apply these results to find real elliptic normal curves E ⊂ P
3 that satisfy

Property �. By [28, p. 456], E is the base locus of some pencil P of quadrics
spanned by two real quadrics Q,Q′ ⊂ P

3. By [81, Section 6.5], there are precisely
four singular quadrics Q0, Q1, Q2, Q3 in the complexified pencil PC, each a rank 3
cone of multiplicity 1. These singular quadrics correspond to the linear factors of
the discriminant of the pair (Q,Q′), which is a homogeneous form P := det(sQ +
tQ′) of degree 4. There are therefore three possibilities for the four singular quadrics
Q0, Q1, Q2, Q3. Either

(1) all four belong to P , or

(2) two of them belong P and two of them form a conjugate pair in PC\P , or

(3) none of them belongs to P and they form two conjugate pairs in PC\P .

Clearly these three categories are left invariant under changing coordinates by a real
projectivity of P3. The examples given in the next two sections fall into the categories
(1) and (2), and we are not quite sure what role the third category plays. In the second
case the discriminant of P is negative, while it is positive in the first and third cases,
suggesting that the categories (1) and (3) somehow belong together. These categories
are therefore grouped together into one category in Table 4.4a.

Elliptic normal curve with one real connected component

Let Λ = ω1Z⊕ω2Z ⊂ C be a lattice with ω1, iω2 ∈ R, and consider the complex elliptic
curve EC = C/Λ with distinguished point O = 0 + Λ. Applying Proposition 20 to the
basis {1, ℘(z), ℘′(z), ℘2} of L(4O), we obtain a map

χ′ : EC −→ P
3
C
, z �−→

[
1 : ℘(z) : ℘′(z) : ℘2

]
(4.14)

that embeds EC as the elliptic normal curve in P
3
C
that is the base locus of the pencil

PC generated by the quadrics Q1 : wz − x2 = 0 and Q2 : y
2 − 4xz + g2wx+ g3w

2 = 0,
with g2 = g2(Λ) and g3 = g3(Λ) the Weierstrass invariants of EC. The singular quadrics
in this pencil correspond to the factors of

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 2
0 −4 0 0
0 0 0 0
2 0 0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
g3

1
2
g2 0 0

1
2
g2 0 0 −2
0 0 1 0
0 −2 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = 4t(4s3 − g2st

2 − g3t
3). (4.15)

By Proposition 20 the curve EC is embedded normally, implying that it cannot be
contained in the union of two planes. All singular quadrics in PC must therefore be
rank 3 cones. Since EC is nonsingular, the modular discriminant Δ(Λ) := g32 − 27g23 is
nonzero. If Δ(Λ) < 0, then two of the cones in PC are elements of P , while the other
two cones are not. If Δ(Λ) > 0, on the other hand, then all four cones belong to P .

Alternatively, the basis {1, ℘(z), ℘′(z), ℘′′(z)} of L(4O) yields the embedding

χ′′ : EC −→ P
3
C
, z �−→

[
1 : ℘(z) : ℘′(z) : ℘′′(z)

]
. (4.16)

How is this embedding related to the embedding χ′? Differentiating the identity ℘′2 =
4℘3−g2℘−g3 = 0, one finds that ℘ satisfies the differential equation ℘′′ = 6℘2− 1

2
g2 = 0.
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It follows that the curves χ′(EC) and χ
′′(EC) are related by the real projectivity of P3

with matrix⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

−1
2
g2 0 0 6

⎤⎥⎥⎦ .
Let π : P3

C
−→ P

2
C
be the projection from the point [0 : 0 : 0 : 1] ∈ EC onto the plane

z = 0, and let ψ : EC −→ P
2
C
be the embedding defined by z �−→ [1 : ℘(z) : ℘′(z)].

Then there is a commutative diagram

EC

ψ
���

��
��

��
�

χ′
��
P
3

π

��

P
2

(4.17)

and the restriction of π to χ′(EC) is an isomorphism π′ : χ′(EC) −→ ψ(EC). The latter
curve is given by the Weierstrass equation wy2 = 4x3 − g2w

2x− g3w
3. It follows that

the real elliptic normal curve E ⊂ P
3 defined as the base locus of the real pencil of

quadrics generated by Q1 and Q2 has one real component if Δ(Λ) < 0 and two real
components if Δ(Λ) > 0.

Suppose Δ(Λ) < 0. Identifying S
1 � R/ω1Z, the restriction χ1 = χ′|R/ω1Z : S1 −→

E is a parameterization of the only real connected component of E ⊂ P
3. It follows

directly from Proposition 20 that the four coinciding parameterized curves χ1 : S
1 −→

E have Properties P1 and P2. We conclude that E is a curve that satisfies Property
�.

As an example, let ω1 and ω2 be such that g2 = 0 and g3 = −4. Then Δ(Λ) < 0,
and the discriminant of Q1 : wz − x2 = 0 and Q2 : y

2 − 4xz − 4w2 = 0 from Equation
4.15 factors as 16t(s+ t)(s2 − st+ t2). We find two rank 3 cones Q1, Q1 −Q2 in P and
a pair of complex conjugated rank 3 cones in PC\P . In the chart w = 1, the quadrics
Q1, Q2, and the base locus E of P can be visualized as follows.

Elliptic normal curve with two real connected components

Suppose Δ(Λ) > 0 and identify S
1 � R/ω1Z. The curve E has two real connected

components, one of which is parameterized by χ1 : S
1 −→ E. By the commutative dia-

gram from Equation 4.17 and by Section 4.3.10, the other component is parameterized
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by the map χ2 : S
1 −→ P

3 defined by t �−→ χ′(t + 1
2
ω2). These two parameterizations

can be combined into a single parameterization

χ : S1 × Z2 −→ E, (t, a) �−→
{
χ1(t) = χ′(t) if a = 0
χ2(t) = χ′(t+ 1

2
ω2) if a = 1

By Proposition 20, any four points χ(t0, a0), χ(t1, a1), χ(t2, a2), χ(t3, a3) are coplanar
if and only if t0+ t1+ t2+ t3+(a0+a1+a2+a3)

1
2
ω2 ≡ 0 mod Λ, which happens if and

only if t0 + t1 + t2 + t3 ≡ 0 mod ω1 and a0 + a1 + a2 + a3 ≡ 0 mod 2. We conclude
that the four coinciding parameterized curves χ : S1 × Z2 −→ E satisfy Properties
P1, P2 and that E is a curve that satisfies Property �.

As an example, let ω1 and ω2 be such that g2 = 1 and g3 = 0. This is sometimes
called the lemniscatic case [1, Section 18.14]. Then Δ(Λ) > 0, and the discriminant
of Q1 : wz − x2 = 0 and Q2 : y2 − 4xz + wx = 0 from Equation 4.15 factors as
4st(2s− t)(2s+ t). We find the four rank 3 cones Q1, Q2, 2Q1 +Q2, 2Q1 −Q2 in P . In
the chart w = 1, the quadrics Q1, Q2, and the base locus E of P can be visualized as
follows.

4.4.6 Singular irreducible quartics

There are two types of singular irreducible curves CC ⊂ P
3
C
of degree 4 and arithmetic

genus 1, namely the cuspidal quartic (corresponding to characteristic [31] in Table 4.2)
and the nodal quartic (corresponding to characteristic [211] in Table 4.2). Similarly
to the situation in the projective plane, there are two types of real curves C ⊂ P

3

whose complexification CC ⊂ P
3
C
is a nodal quartic. The real curve C is said to have a

crunode if the tangent cone at the singularity of CC comprises two real lines, and C is
said to have an acnode (or isolated point) if the tangent cone at the singularity of CC

comprises a pair of complex conjugated lines.

Irreducible quartic with a cusp

Suppose C ⊂ P
3 is an irreducible curve of degree 4 with a cusp at Q. Then C is

rational and has only one real component. There exist a rational normal curve C ′ ⊂ P
4

of degree 4 and a linear projection π : P4 −→ P
3 whose projection center P lies on a

tangent line LQ′ of some point Q′ of C ′ for which π(C ′) = C and π(Q′) = Q. We can
assume C ′ is the standard rational normal curve of degree 4 parameterized by

φ : P1 −→ C ′ ⊂ P
4, [s : t] �−→

[
s4 : s3t : s2t2 : st3 : t4

]
, (4.18)
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The following lemma states that we can move around any three points on such a
curve by changing coordinates by a projectivity.

Lemma 22. Let C ⊂ P
n be a rational normal curve of degree n ≥ 1. For any six points

P1, P2, P3, P
′
1, P

′
2, P

′
3 ∈ C, there exists a real projectivity ψ : Pn −→ P

n that restricts to
an automorphism ψ|C : C −→ C and maps Pi to P

′
i for i = 1, 2, 3.

Proof. After applying a projective change of coordinates, we can assume that C is the
standard rational normal curve of degree n parameterized by

φ : P1 −→ C ⊂ P
n, [s : t] �−→

[
sn : sn−1t : · · · : stn−1 : tn

]
. (4.19)

By the fundamental theorem for projectivities, there exists a projectivity ψ′ : P1 −→ P
1

that maps φ−1(Pi) to φ−1(P ′
i ) for i = 1, 2, 3. Let ψ : C −→ C be the associated

automorphism that makes the diagram

P
1

ψ′
��

φ
�� C

� � ��

ψ

��

P
n

P
1

φ
�� C

� � �� P
n

commute. Let us show that this automorphism ψ can be lifted to a projectivity of Pn.
If [s′ : t′] := ψ′([s : t]) is given by the matrix multiplication[

s′

t′

]
=

[
a b
c d

] [
s
t

]
,

then s′n−kt′k = (as + bt)n−k(cs + dt)k for k = 0, . . . , n and ψ is given by the matrix
multiplication⎡⎢⎢⎢⎣

s′n

s′n−1t′

...
t′n

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
an nan−1b · · · bn

an−1c an−1d+ (n− 1)an−2bc · · · bn−1d
...

...
. . .

...
cn ncn−1d · · · dn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

sn

sn−1t
...
tn

⎤⎥⎥⎥⎦ .
The above matrix is invertible, and its inverse is found by substituting[

a b
c d

]
�−→ 1

ad− bc

[
d −b
−c a

]
.

We conclude that ψ can be lifted to a projectivity Pn −→ P
n that satisfies the conditions

of the lemma.

As a consequence of this lemma, we can choose Q′ = [0 : 0 : 0 : 0 : 1]. The point P
will have moved along to some point [0 : 0 : 0 : a : b] on the tangent line to C ′ at Q′.
The projectivity of P1 with matrix[

4 0
−b 4a

]
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induces a projectivity of P4 with matrix⎡⎢⎢⎢⎢⎣
256b4 0 0 0 0
−64b4 256ab3 0 0 0
16b4 −128ab3 256a2b2 0 0
−4b4 48ab3 −192a2b2 256a3b 0
b4 −16ab3 96a2b2 −256a3b 256a4

⎤⎥⎥⎥⎥⎦ ,
which restricts to an automorphism of C ′ that maps Q′ to itself and P to [0 : 0 : 0 : 1 :
0]. We may thus assume that

π : P4 −→ P
3,

⎡⎢⎢⎢⎢⎣
x0
x1
x2
x3
x4

⎤⎥⎥⎥⎥⎦ �−→

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x0
x1
x2
x3
x4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
x0
x1
x2
x4

⎤⎥⎥⎦ .
Restricting the composition π ◦ φ : P1 −→ P

3 to the affine chart defined by s = 1, one
finds a parameterization

χ : R −→ Cns, t �−→
[
1 : t : t2 : t4

]
.

It follows that C is the base locus of the pencil of quadrics spanned by the rank 3 cones
Q1 : wy − x2 = 0 and Q2 : wz − y2 = 0. As

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 1

2
0

0 −1 0 0
1
2

0 0 0
0 0 0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 0 1

2

0 0 0 0
0 0 −1 0
1
2

0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = −1

4
st3,

Q1 appears with multiplicity 3 and Q2 with multiplicity 1 in this pencil, and there
are no other singular fibers. In the chart z = 1, the objects Q1, Q2, and C can be
visualized as follows.

Any four distinct points χ(t0), χ(t1), χ(t2), χ(t3) on Cns are coplanar if and only if

0 = det

⎡⎢⎢⎣
1 t0 t20 t40
1 t1 t21 t41
1 t2 t22 t42
1 t3 t23 t43

⎤⎥⎥⎦ = (t0 + t1 + t2 + t3)
∏

0≤i<j≤3

(ti − tj),

which happens precisely when t0+t1+t2+t3 = 0. It follows that χ induces a topological
group structure on Cns and that the four coinciding parameterized curves χ : R −→ C
have Properties P1 and P2. We conclude that C is a curve that satisfies Property �.
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Irreducible quartic with a crunode

Suppose C ⊂ P
3 is an irreducible curve of degree 4 with a crunode at Q. Then there

exist a rational normal curve C ′ ⊂ P
4 of degree 4 and a linear projection π : P4 −→ P

3

whose projection center P lies on a line L that meets C in two points Q′
1, Q

′
2 for which

π(C ′) = C and π(Q′
1) = π(Q′

2) = Q. By Lemma 22, we can assume that C ′ is the
standard rational normal curve parameterized as in Equation 4.18, Q1 = [1 : 0 : 0 : 0 :
0], Q2 = [0 : 0 : 0 : 0 : 1], and P = [a : 0 : 0 : 0 : b] for some a, b �= 0.

The projectivity of P1 with matrix[
|a|−1/4 0

0 |b|−1/4

]
induces a projectivity of P4 with matrix⎡⎢⎢⎢⎢⎣

|a|−1 0 0 0 0
0 |a|−3/4|b|−1/4 0 0 0
0 0 |a|−2/4|b|−2/4 0 0
0 0 0 |a|−1/4|b|−3/4 0
0 0 0 0 |b|−1/4

⎤⎥⎥⎥⎥⎦
which maps C ′ to itself, leaves Q′

1 and Q′
2 invariant, and maps P to [1 : 0 : 0 : 0 : ±1].

The projection π then becomes

π : P4 −→ P
3,

⎡⎢⎢⎢⎢⎣
x0
x1
x2
x3
x4

⎤⎥⎥⎥⎥⎦ �−→

⎡⎢⎢⎣
1 0 0 0 ∓1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x0
x1
x2
x3
x4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
x0 ∓ x4
x1
x2
x3

⎤⎥⎥⎦ .

Let ι : R∗ −→ P
1 be the inclusion defined by t �−→ [1 : t]. The composition

χ′ := π ◦ φ ◦ ι : R∗ −→ Cns, t �−→
[
1∓ t4 : t : t2 : t3

]
parameterizes the nonsingular points of C. It follows that C is the base locus of the
pencil P of quadrics spanned by Q1 : xz − y2 and Q2 : x

2 − wy ∓ z2 = 0. As

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 1

2

0 0 −1 0
0 1

2
0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 −1

2
0

0 1 0 0
−1

2
0 0 0

0 0 0 ∓1

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

4
t2

(
1

4
s2 ± t2

)
,

the rank 3 cone Q1 appears with multiplicity 2. In case of the “lower sign”, there are
two additional singular fibers in P , each a rank 3 cone of multiplicity 1. In case of the
“upper sign”, there are no other singular fibers in P (but there are two additional rank
3 cones of multiplicity 1 in PC). In the chart w = 1, the objects Q1, Q2, and C can
be visualized as follows (the left figure corresponding to the upper sign and the right
figure to the lower sign).
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Any four distinct points χ′(ti), i = 0, 1, 2, 3, are coplanar if and only if

0 = det

⎡⎢⎢⎣
1± t40 t0 t20 t30
1± t41 t1 t21 t31
1± t42 t2 t22 t32
1± t43 t3 t23 t33

⎤⎥⎥⎦ = (1∓ t1t2t3t4)
∏

0≤i<j≤3

(tj − ti).

Precomposing χ′ by the homeomorphism ψ : R × Z2 −→ R
∗ defined by (u, a) �−→

(−1)aeu, we find a parameterization χ := χ′ ◦ ψ : R× Z2 −→ Cns given by

(u, a) �−→
[
1± e4u : (−1)aeu : e2u : (−1)ae3u

]
that turns Cns into a topological group. Any four distinct points χ(u0, a0), χ(u1, a1),
χ(u2, a2), χ(u3, a3) on Cns are coplanar if and only if

(−1)a0+a1+a2+a3eu0+u1+u2+u3 = ±1.

In case of the upper sign, one finds that the four coinciding parameterized curves
χ : R × Z2 −→ C have Properties P1 and P2. In case of the lower sign, the three
coinciding parameterized curves

R −→ C, u �−→ χ(u, 0)

and the parameterized curve

R −→ C, u �−→ χ(u, 1)

together have Properties P1 and P2. We conclude that in each case C is a curve that
satisfies Property �.

Irreducible quartic with an acnode

Suppose C ⊂ P
3 is an irreducible curve of degree 4 with an acnode at Q. Then there

exist a rational normal curve C ′ ⊂ P
4 of degree 4 and a linear projection π : P4 −→ P

3

whose projection center P lies on a line L that meets C ′
C
in two complex conjugated

points Q′, Q
′
for which π(C ′) = C and π(Q′) = π(Q

′
) = Q.

Similar to Lemma 22, the following lemma states that we can move around any
pair of complex conjugated points on C ′

C
by a real projectivity.
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Lemma 23. Let C ⊂ P
n be a rational normal curve of degree n ≥ 1 and CC ⊂ P

n
C

its complexification. For any two pairs (P1, P 1), (P2, P 2) of complex conjugated points
in CC, there exists a real projectivity ψ : Pn

C
−→ P

n
C
that restricts to an automorphism

ψ|C : C −→ C and maps P1 to P2 and P 1 to P 2.

Proof. After changing coordinates by a real projectivity, we can assume that C is the
standard rational normal curve of degree n parameterized by the map φ from Equation
4.19. For i = 1, 2, the point Pi is nonreal and corresponds to a point [αi + βii : 1] :=
φ−1(Pi) ∈ P

1
C
with βi �= 0. The real projectivity ψ′ : P1

C
−→ P

1
C
with matrix[

β2/β1 α2 − α1β2/β1
0 1

]
maps [α1 ± β1i : 1] to [α2 ± β2i : 1] and induces an automorphism ψ : CC −→ CC that
maps P1 �−→ P2 and P 1 �−→ P 2 for which the diagram

P
1
C

ψ′
��

φ
�� CC

� � ��

ψ

��

P
n
C

P
1
C φ

�� CC

� � �� P
n
C

commutes. As in the proof of Lemma 22, this automorphism ψ can be lifted to a real
projectivity P

n
C
−→ P

n
C
satisfying the conditions of the lemma.

As a consequence of this lemma, we can assume that C ′ is the standard rational
normal curve parameterized as in Equation 4.18,

Q′ = φ([i : 1]) = [1 : −i : −1 : i : 1], Q
′
= φ([−i : 1]) = [1 : i : −1 : −i : 1],

and P = [a : b : −a : −b : a]. Suppose a = 1 and let α be one of the (real) roots of the
polynomial

1− 4bt− 6t2 + 4bt3 + t4=
(
t2 + 2(

√
b2 + 1 + b)t− 1

)(
t2 + 2(

√
b2 + 1− b)t− 1

)
.

The projectivity of P1 with matrix[
1 −α
α 1

]
induces a real projectivity of P4

C
with matrix⎡⎢⎢⎢⎢⎣

1 −4α 6α2 −4α3 α4

α −3α2 + 1 3α3 − 3α −α4 + 3α2 −α3

α2 −2α3 + 2α α4 − 4α2 + 1 2α3 − 2α α2

α3 −α4 + 3α2 −3α3 + 3α −3α2 + 1 −α
α4 4α3 6α2 4α 1

⎤⎥⎥⎥⎥⎦
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that leaves the points Q′, Q
′
invariant and moves P to [0 : 1 : 0 : −1 : 0]. We may

therefore assume that

π : P4 −→ P
3,

⎡⎢⎢⎢⎢⎣
x0
x1
x2
x3
x4

⎤⎥⎥⎥⎥⎦ �−→

⎡⎢⎢⎣
0 1 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x0
x1
x2
x3
x4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
x1 + x3
x0
x2
x4

⎤⎥⎥⎦ .
From the parameterization

χ′ = π ◦ φ : P1 −→ Cns, [s : t] �−→ [s3t+ st3 : s4 : s2t2 : t4]

one obtains that C is the base locus of the pencil P of quadrics spanned by Q1 :
y2 − xz = 0, Q2 : w

2 − xy − 2y2 − yz = 0. As

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 −1

2

0 0 1 0
0 −1

2
0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
1 0 0 0
0 0 −1

2
0

0 −1
2

−2 −1
2

0 0 −1
2

0

⎤⎥⎥⎦
⎞⎟⎟⎠ = −1

4
(s− t)2st,

the singular quadrics in P are Q1, Q2, both rank 3 cones of multiplicity 1, and a third
rank 3 cone Q3 = Q1 + Q2 of multiplicity 2. In the chart z = 1, the objects Q1, Q3,
and C can be visualized as follows.

Four distinct points χ′([si : ti]), i = 0, 1, 2, 3, are coplanar if and only if

0 = det

⎡⎢⎢⎣
s30t0 + s0t

3
0 s40 s20t

2
0 t40

s31t1 + s1t
3
1 s41 s21t

2
1 t41

s32t2 + s2t
3
2 s42 s22t

2
2 t42

s33t3 + s3t
3
3 s43 s23t

2
3 t43

⎤⎥⎥⎦ = −
∏

0≤i<j≤3

(sitj − sjti)

×
(
(s0t1 + s1t0)(s2s3 − t2t3) + (s2t3 + s3t2)(s0s1 − t0t1)

)
,

which happens if and only if the latter factor is zero. Identifying S
1 with P

1 by the
homeomorphism ψ : S1 −→ P

1 defined by θ �−→ [cos(θ/2) : sin(θ/2)], this factor is zero
if and only if

sin

(
θ0
2
+
θ1
2

)
cos

(
θ2
2
+
θ3
2

)
+ sin

(
θ2
2
+
θ3
2

)
cos

(
θ0
2
+
θ1
2

)
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= sin

(
θ0
2
+
θ1
2
+
θ2
2
+
θ3
2

)
= 0 ⇐⇒ θ0 + θ1 + θ2 + θ3 ≡ 0 mod 2π,

where we made use of the angle-sum trigonometric identities. It follows that χ = χ′ ◦ψ
induces a topological group structure on Cns and that the four coinciding parameterized
curves χ : R −→ C together have Properties P1 and P2. We conclude that C is a
curve that satisfies Property �.

4.4.7 Union of a cubic and a line

Let C ⊂ P
3 be the union of an irreducible cubic C ′ and a line L. If C is the com-

plete intersection of two quadrics, then C ′ is a twisted cubic and L is either a secant
(corresponding to characteristic [22] in Table 4.2) of C ′ or a tangent (corresponding
to characteristic [4] in Table 4.2) to C ′. After changing coordinates by a projectiv-
ity, we may assume that C ′ is the standard twisted cubic in P

3 [29, Theorem 6.8].
Parametrically, C ′ is given as the image of the map

φ : P1 −→ P
3, [s : t] �−→

[
s3 : s2t : st2 : t3

]
, (4.20)

and implicitly C ′ is the base locus of the net of quadrics spanned by

Q1 : wy − x2 = 0, Q2 : xz − y2 = 0, Q3 : wz − xy = 0.

The singular quadrics sQ1 + tQ2 + uQ3 in this net are those for which

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 1

2
0

0 −1 0 0
1
2

0 0 0
0 0 0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 0 0
0 0 0 1

2

0 0 −1 0
0 1

2
0 0

⎤⎥⎥⎦+ u

⎡⎢⎢⎣
0 0 0 1

2

0 0 −1
2

0
0 −1

2
0 0

1
2

0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠

=
1

16
(st− u2)2 = 0

and are therefore parameterized by the points of the double conic C0 : (st− u2)2 = 0.
Since the twisted cubic is not contained in a union of two planes, every such singular
quadric is a cone of rank 3.

As the complete intersection of two quadrics is a curve of degree 4, the base locus
of any pencil P containing C ′ is the union of C ′ and some line L. The pencil P
corresponds to a line L0 of points [s : t : u] ∈ P

2. One can thus distinguish three types
of pencils:

(1) L0 cuts C0 in two distinct points with multiplicity 2.

(2) L0 touches C0 in one point with multiplicity 4.

(3) L0 is disjoint from C0.

In case (1), the vertices P1, P2 of the cones in P are double points of C ′∪L, implying
that L cuts C ′ (transversely) in P1, P2 and therefore that L is a secant of C ′. This is
the case of characteristic [22] in Table 4.2.
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In case (2), the vertex P of the cone in P is the only singularity of C ′∪L, implying
that L cuts C ′ (tangentially) in P and therefore that L is a tangent of C ′. This is the
case of characteristic [4] in Table 4.2.

As before, let us denote the complexification of any real curve C by attaching
the symbol C as a subindex. In case (3), the complex line L0

C
cuts C0

C
in two complex

conjugated points with multiplicity 2. This is the case of characteristic [22] in Table 4.2.
It follows that the complexication PC of P contains two singular fibers of multiplicity
2, rank 3, and with conjugated equations. These cones have conjugated vertices P, P
that are double points of CC, implying that LC cuts C ′

C
in P, P , and therefore that LC

is a secant of C ′
C
, whose real part L is disjoint from C ′.

A twisted cubic and a real secant

Suppose that L is a real secant of C ′. That is, C ′ and L meet in two real points P1, P2.
By Lemma 4.19, we can assume that P1 = [1 : 0 : 0 : 0], P2 = [0 : 0 : 0 : 1] and therefore
that L : x = y = 0. Then C is the base locus of the pencil P of quadrics spanned by
Q1 and Q2. The singular fibers in this pencil correspond to the factors of

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 1

2
0

0 −1 0 0
1
2

0 0 0
0 0 0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 0 0
0 0 0 1

2

0 0 −1 0
0 1

2
0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

16
s2t2.

It follows that the general fiber in this pencil is a smooth quadric and that there are
two rank 3 cones in P , each of multiplicity 2, with vertices at P1 and P2. The following
image shows C as the intersection of these cones Q1, Q2 in the chart w = 1.

The two components of the open set C ′\{P1, P2} can be parameterized by precom-
posing φ by the map R × Z2 −→ P

1 defined by (t, a) �−→ [1 : (−1)aet], resulting into
a homeomorphism χ1 : R × Z2 −→ C ′\{P1, P2}. We wish to find a homeomorphism
χ2 : R×Z2 −→ L\{P1, P2} sending (t, a) �−→ [1 : 0 : 0 : f(t, a)], compatible with χ1 in
the sense that

det

⎡⎢⎢⎣
1 0 0 f(t0, a0)
1 (−1)a1et1 e2t1 (−1)a1e3t1

1 (−1)a2et2 e2t2 (−1)a2e3t2

1 (−1)a3et3 e2t3 (−1)a3e3t3

⎤⎥⎥⎦
=

(
(−1)a1et1 − (−1)a2et2

)(
(−1)a2et2 − (−1)a3et3

)
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×
(
(−1)a3et3 − (−1)a1et1

)(
(−1)a1+a2+a3et1+t2+t3 − f(t0, a0)

)
is zero if and only if either two of the pairs (t1, a1), (t2, a2), (t3, a3) coincide, or a0 +
a1 + a2 + a3 = 0 and t0 + t1 + t2 + t3 = 0. Clearly f(t0, a0) = (−1)a0e−t0 satisfies this
condition. Moreover, any three rows in the above matrix are independent (as long as
they correspond to distinct points). It follows that the three coinciding parameterized
curves χ1 : R × Z2 −→ C ′ and the parameterized curve χ2 : R × Z2 −→ L together
have Properties P1 and P2. We conclude that C is a curve that satisfies Property �.

A twisted cubic and a tangent

Suppose that L is a tangent of C ′. By an argument similar to that of the previous
section, we can assume that L : y = z = 0 is the tangent line to the point P = [1 : 0 : 0 :
0] of C ′. Then C is the base locus of the pencil of quadrics spanned by Q2 : xz−y2 = 0
and Q3 : wz − xy = 0. The singular fibers correspond to the factors of

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 1

2

0 0 −1 0
0 1

2
0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 0 1

2

0 0 −1
2

0
0 −1

2
0 0

1
2

0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

16
t4.

It follows that the general fiber is a smooth quadric. There is one singular fiber of
multiplicity 4, which is the rank 3 cone Q2 with vertex at P . The following image
shows C as the intersection of the cone Q2 and the smooth quadric Q3 in the chart
w = 1.

Precomposing the parameterization φ from Equation 4.20 with the embedding
R −→ P

1 given by t �−→ [t : 1] yields a homeomorphism χ1 : R −→ C ′\{P}. We
wish to find a homeomorphism χ2 : R −→ L\{P} sending t �−→ [a(t) : 1 : 0 : 0],
compatible with χ1 in the sense that

det

⎡⎢⎢⎣
a(t0) b(t0) 0 0
t31 t21 t1 1
t32 t22 t2 1
t33 t23 t3 1

⎤⎥⎥⎦ = (t1 − t2)(t2 − t3)(t3 − t1)
(
t1 + t2 + t3 − a(t0)

)

is zero if and only if either two of the t1, t2, t3 coincide, or t0 + t1 + t2 + t3 = 0. Clearly
a(t) = −t satisfies this condition. Moreover, any three rows in the above matrix are
independent (as long as they correspond to distinct points). It follows that the three



96 CHAPTER 4. GENERALIZED PRINCIPAL LATTICES

coinciding parameterized curves χ1 : R × Z2 −→ C ′ and the parameterized curve
χ2 : R×Z2 −→ L together have Properties P1 and P2. We conclude that C is a curve
that satisfies Property �.

A twisted cubic and a secant through complex conjugated points

Suppose that C is the disjoint union of the standard twisted cubic C ′ and a line L such
that LC cuts C ′

C
in two complex conjugated points P, P . By Lemma 23, we can assume

that

P = φ([i : 1]) = [−i : −1 : i : 1], P = φ([−i : 1]) = [i : −1 : −i : 1],
and L : w + y = x + z = 0. It follows that C is the base locus of the pencil P of
quadrics spanned by Q3 and Q4 := Q1 − Q2 : wy − x2 − xz + y2 = 0. The singular
quadrics in this pencil correspond to the factors of

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 1

2

0 0 −1
2

0
0 −1

2
0 0

1
2

0 0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 1

2
0

0 −1 0 −1
2

1
2

0 1 0
0 −1

2
0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

16
(s2 + t2)2.

It follows that the general fiber in P is a smooth quadric, that there are no singular
quadrics in P , and that there are two rank 3 cones of multiplicity 2 in PC. The following
image shows Q3, Q4, and C in the chart w = 1.

As real topological spaces, both L and C ′ are homeomorphic to S
1 = R/2πZ.

Precomposing φ by the homeomorphism S
1 −→ P

1 defined by θ �−→
[
cos(θ/2) :

sin(θ/2)
]
yields a homeomorphism

χ1 : S
1 −→ C ′, θ �−→

[
cos3

θ

2
: cos2

θ

2
sin

θ

2
: cos

θ

2
sin2 θ

2
: sin3 θ

2

]
.

Let us write ci for cos(θi/2) and si for sin(θi/2). We wish to find a parameterization

χ2 : S
1 −→ L, θ �−→

[
a(θ0) : −b(θ0) : −a(θ0) : b(θ0)

]
of the line L compatible with χ1 in the sense that

det

⎡⎢⎢⎣
a(θ0) −b(θ0) −a(θ0) b(θ0)
c31 c21s1 c1s

2
1 s31

c32 c22s2 c2s
2
2 s32

c33 c23s3 c3s
2
3 s33

⎤⎥⎥⎦ = 0 (4.21)
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if and only if

θ0 + θ1 + θ2 + θ3 ≡ 0, θ1 ≡ θ2, θ1 ≡ θ3, or θ2 ≡ θ3 mod 2π.

The determinant can be written as the product of the factor −(c1s2 − c2s1)(c1s3 −
c3s1)(c2s3 − c3s2) and the factor

a(θ0)
[
s3(c1c2 − s1s2) + c3(c1s2 + c2s1)

]
−b(θ0)

[
c1(s2s3 − c2c3) + s1(c2s3 + c3s2)

]
.

The former factor is zero if and only if two of the angles θ1, θ2, θ3 coincide. Via the
angle-sum trigonometric identities, the latter factor can be rewritten to

a(θ0)

[
+s3 cos

(
θ1
2
+
θ2
2

)
+ c3 sin

(
θ1
2
+
θ2
2

)]
−b(θ0)

[
−c1 cos

(
θ2
2
+
θ3
2

)
+ s1 sin

(
θ2
2
+
θ3
2

)]
= a(θ0) sin

(
θ1
2
+
θ2
2
+
θ3
2

)
+ b(θ0) cos

(
θ1
2
+
θ2
2
+
θ3
2

)
.

Choosing a(θ0) = cos(θ0/2) and b(θ0) = sin(θ0/2) and using an angle-sum trigonometric
identity, we find that the latter factor is zero if and only if

0 = sin

(
θ0
2
+
θ1
2
+
θ2
2
+
θ3
2

)
⇐⇒ θ0 + θ1 + θ2 + θ3 = 0 mod 2π.

Note that any three rows in the matrix of Equation 4.21 are independent (as long as
they correspond to distinct points). It follows that the three coinciding parameterized
curves χ1 : S

1 −→ C ′ and the parameterized curve χ2 : S
1 −→ L together have

Properties P1 and P2. We conclude that C is a curve that satisfies Property �.

4.4.8 Curves containing a nondegenerate conic

Suppose that C contains as an irreducible component a nondegenerate conic C1. After
changing coordinates by a projectivity, we may assume that C1 is the rational normal
curve of degree 2 in P

3 given parametrically as the image of the map

φ : P1 −→ P
3, [s : t] �−→

[
s2 : st : t2 : 0

]
and implicitly by the equations C1 : x2 − wy = z = 0. The quadric surfaces passing
through C1,

Q[a:b:c:d:e] : 2a(x
2 − wy) + 2bwz + 4cxz + 2dyz + 2ez2 = 0,

where [a : b : c : d : e] ∈ P
4, form a linear system L � P

4. The singular quadrics
Q[a:b:c:d:e] in this linear system are those for which

0 = detM[a:b:c:d:e] = 4(c2 − ae− bd)a2, with M[a:b:c:d:e] :=

⎡⎢⎢⎣
0 0 −a b
0 2a 0 2c
−a 0 0 d
b 2c d 2e

⎤⎥⎥⎦ .
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Of these, the quadrics Q[a:b:c:d:e] satisfying c
2 − ae− bd = 0 and a �= 0 have rank 3, the

quadrics Q[0:b:c:d:e] have rank 2, except for the quadric Q[0:0:0:0:1], which has rank 1.
Any pencil P ⊂ L of quadrics through C1 corresponds to a line L ⊂ P

4. If we
demand that the base locus C of P is a curve that defines a generalized principal
lattice, then this leads to some restrictions on L. Clearly L cannot be contained in
the plane a = 0, as this would imply that C contains the plane z = 0. Moreover,
L cannot pass through [0 : 0 : 0 : 0 : 1], as this would imply that C is contained
in the plane z = 0. It follows that L intersects the hyperplane a = 0 in some point
[0 : b : c : d : e] �= [0 : 0 : 0 : 0 : 1], which corresponds to the rank 2 quadric
2z(bw + 2cx + dy + ez) = 0. If the line L were contained in the hypersurface defined
by c2 − ae − bd = 0, then C would not be reduced (C would be the union of C1 and
the double line formed by singularities of the cones in P , which is the case of Theorem
19).

According to how L intersects the hypersurface 4(c2−ae−bd)a2 of singular quadrics,
the relevant cases from Section 4.4.4 for the complexification CC are

(1) two conics meeting in two distinct points (characteristic [(11)11] in Table 4.2),

(2) two conics meeting tangentially in one point (characteristic [(21)1] in Table 4.2),

(3) two intersecting lines intersecting a conic at two points (characteristic [2(11)] in
Table 4.2),

(4) two intersecting lines and a conic touching the plane of the lines at the intersection
(characteristic [(31)] in Table 4.2).

There are two types of real curves C = C1 ∪ C2 whose complexification is of type
(1). Either C1 and C2 meet in two real points, or C1 and C2 are disjoint but their
complexifications meet in a pair of complex conjugated points.

Two conics meeting in two real points

Suppose that C is the union of two nondegenerate conics C1, C2 that lie in different
planes H1, H2 and meet in two points P1, P2. After changing coordinates by a projec-
tivity of P3, we can assume that C1 is the standard rational normal curve of degree
two parameterized by

φ : P1 −→ C1 ⊂ H1, [s : t] �−→
[
s2 : st : t2 : 0

]
, H1 : z = 0, (4.22)

and implicitly defined by C1 : x2 − wy = z = 0. By Lemma 22, we can assume that
P1 = [1 : 0 : 0 : 0] and P2 = [0 : 0 : 1 : 0]. As the secant of C2 through these points is
given by x = z = 0, the conic C2 is contained in a plane of the form H2 : x + αz = 0
for some real number α. Changing coordinates by the projectivity of P3 with matrix⎡⎢⎢⎣

1 0 0 0
0 1 0 α
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ ,
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we can assume that H2 : x = 0 and C2 : Bwy +Dwz +Eyz + Fz2 = x = 0 for certain
real numbers B,D,E, F . Since C2 is nondegenerate, we can assume that B = 1 and

0 �= det

⎡⎣ 0 1
2

1
2
D

1
2

0 1
2
E

1
2
D 1

2
E F

⎤⎦ =
1

4
(DE − F ).

Let ± denote the sign of this determinant and ∓ := −±. Changing coordinates by the
projectivity of P3 with matrix⎡⎢⎢⎣

1 0 0 E
0 1 0 0
0 0 1 D
0 0 0

√
±DE ∓ F

⎤⎥⎥⎦ ,
we can assume that C2 : ±z2−wy = x = 0 and that C is the base locus of the pencil P
of quadrics generated by Q1 : xz = 0 and Q2 : x

2± z2−wy = 0. The singular quadrics
in this pencil correspond to the factors of

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 1

2

0 0 0 0
0 1

2
0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 −1

2
0

0 1 0 0
−1

2
0 0 0

0 0 0 ±1

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

16
(s2 ∓ 4t2)t2.

The rank 2 cone Q1 appears with multiplicity 2 in this pencil. In case of the “upper
sign”, there are two additional rank 3 cones 2Q1 + Q2 and −2Q1 + Q2 in P , each
appearing with multiplicity 1. In case of the “lower sign”, there are no additional
singular quadrics in P , but there are two additional rank 3 cones 2iQ1 + Q2 and
−2iQ1 + Q2 in PC\P , each appearing with multiplicity 1. In the chart w = 1, the
objects Q1, Q2, and C can be visualized as follows (the left figure corresponding to the
upper sign and the right figure to the lower sign).

The homeomorphism χ : R× Z2 × Z2 −→ Cns defined by

(t, a, b) �−→
{

[ 1 : (−1)aet : e2t : 0 ] if b = 0,
[ e2t : 0 : ±1 : (−1)aet ] if b = 1.
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induces a topological group structure on Cns. Four distinct points χ(t0, a0, 0), χ(t1, a1, 0),
χ(t2, a2, 1), χ(t3, a3, 1) on Cns are coplanar if and only if

0 = det

⎡⎢⎢⎣
1 (−1)a0et0 e2t0 0
1 (−1)a1et1 e2t1 0
e2t2 0 ±1 (−1)a2et2

e2t3 0 ±1 (−1)a3et3

⎤⎥⎥⎦ =
(
(−1)a2et2 − (−1)a3et3

)

×
(
(−1)a0et0 − (−1)a1et1

)(
± 1− (−1)a0+a1+a2+a3et0+t1+t2+t3

)
.

In case of the upper sign, one finds that the parameterized curves

R× Z2 −→ C1, (t, a) �−→ χ(t, a, 0),

R× Z2 −→ C2, (t, a) �−→ χ(t, a, 1),

each counted twice, together have Properties P1 and P2. In case of the lower sign,
the parameterized curves

R −→ C1, t �−→ χ(t, 0, 0) (counted twice),

R −→ C2, t �−→ χ(t, 0, 1),

R −→ C2, t �−→ χ(t, 1, 1),

together have Properties P1 and P2. In each case, we conclude that C is a curve that
satisfies Property �.

Two conics meeting in two complex conjugated points

Suppose that C is the union of two nondegenerate disjoint conics C1, C2 that lie in
different planes H1, H2 and whose complexifications C1,C, C2,C meet in two complex
conjugated points P, P . After changing coordinates by a real projectivity of P3, we can
assume that C1 and H1 are as in Equation 4.22. By Lemma 23, we can assume that
P = [−1 : i : 1 : 0] and P = [−1 : −i : 1 : 0]. As the secant of C2,C passing through
these points is given by x + y = z = 0, the conic C2 is contained in a plane of the
form H2 : (w + y) + αz = 0 for some real number α. Changing coordinates by the
projectivity of P3 with matrix⎡⎢⎢⎣

1 0 0 α
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ ,
we can assume thatH2 : w+y = 0 and C2 : C(x

2+y2)+2Dxz+2Eyz+Fz2 = w+y = 0,
for certain real numbers C,D,E, F . Furthermore, since C2 is nondegenerate, we can
assume that C = 1 and that the characteristic polynomial

det

⎡⎣1− λ 0 D
0 1− λ E
D E F − λ

⎤⎦ = (1− λ)
(
λ2 − (F + 1)λ+ F −D2 − E2

)
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has nonzero constant term. Moreover, if F −D2−E2 > 0, then Descartes’ rule of signs
implies that all eigenvalues are positive, in which case C2 does not define a curve. It
follows that F −D2 − E2 < 0.

Changing coordinates by the projectivity of P3 with matrix⎡⎢⎢⎣
1 0 0 −E
0 −1 0 −D −

√
D2 + E2 − F

0 0 1 E

0 0 0 −2
√
D2 + E2 − F

⎤⎥⎥⎦ ,
we can assume that C2 : x

2 + y2 − xz = w + y = 0 and that C is the base locus of the
pencil of quadrics spanned by Q1 : (w + y)z = 0 and Q2 : x

2 − wy − xz = 0. As,

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 1

2

0 0 0 0
0 0 0 1

2
1
2

0 1
2

0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 −1

2
0

0 1 0 −1
2

−1
2

0 0 0
0 −1

2
0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = − 1

16
(2s− t)(2s+ t)t2,

one finds a rank 2 cone Q1 of multiplicity 2, rank 3 cones Q1 ± 2Q2 of multiplicity 1,
and no other singular quadrics in this pencil. The following figure shows Q1, Q2, and
C in the chart w = 1.

Consider the homeomorphism χ′ : P1 × Z2 −→ Cns defined by

(
[s : t], a

)
�−→

{ [
st : t2 : −st : s2 + t2

]
if a = 0,[

s2 : −st : t2 : 0
]

if a = 1.

Four distinct points χ′([s0 : t0], 0
)
, χ′([s1 : t1], 0

)
, χ′([s2 : t2], 1

)
, χ′([s3 : t3], 1

)
are

coplanar if and only if

0 = det

⎡⎢⎢⎣
s0t0 t20 −s0t0 s20 + t20
s1t1 t21 −s1t1 s21 + t21
s22 −s2t2 t22 0
s23 −s3t3 t23 0

⎤⎥⎥⎦ = −(s2t3 − s3t2)(s0t1 − s1t0)

×
(
(s0s1 − t0t1)(s2s3 − t2t3)− (s0t1 + s1t0)(s2t3 + s3t2)

)
. (4.23)

The latter factor can be simplified by substituting trigonometric functions for the
si and ti. More precisely, identifying S

1 × Z2 � P
1 × Z2 by the homeomorphism
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ψ : (θ, a) �−→
([

cos
(
θ
2
− π

8

)
: sin

(
θ
2
− π

8

)]
, a

)
, the angle-sum trigonometric identities

imply that Equation 4.23 is zero if and only if

0 = cos

(
θ0
2
− π

8
+
θ1
2
− π

8
+
θ2
2
− π

8
+
θ3
2
− π

8

)
= sin

(
θ0 + θ1 + θ2 + θ3

2

)
,

which happens precisely when θ0 + θ1 + θ2 + θ3 ≡ 0 mod 2π. It follows that the
parameterized curves

S
1 −→ C1, θ �−→ χ(θ, 1),

S
1 −→ C2, θ �−→ χ(θ, 0),

each counted twice, together have Properties P1 and P2. We conclude that C is a
curve that satisfies Property �.

Two conics meeting tangentially in one point

Suppose that C is the union of two nondegenerate conics C1 and C2 that lie in different
planes and meet tangentially in a point P . After changing coordinates by a projectivity
of P3, we can assume that C1 and H1 are as in Equation 4.22. By Lemma 22, we can
assume that P = [1 : 0 : 0 : 0]. The tangent line to C1 at the point P is given by
TPC1 : y = z = 0. As C2 passes through P and shares the tangent to C1 at this point,
the conic C2 is contained in a plane of the form H2 : y + αz = 0 for some real number
α. Changing coordinates by the projectivity of P3 with matrix⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 α
0 0 0 1

⎤⎥⎥⎦ ,
we can assume that H2 : y = 0 and C2 : x2 + Dwz + Exz + Fz2 = y = 0 for certain
real numbers D,E, F with D �= 0 (since C2 is nondegenerate). Changing coordinates
by the projectivity of P3 with matrix⎡⎢⎢⎣

1 0 0 (F − 1
4
E2)/D

0 1 0 1
2
E

0 0 1 0
0 0 0 −D

⎤⎥⎥⎦ ,
one can assume that C2 : x

2 − wz = y = 0.
The curve C is the base locus of the pencil of quadrics spanned by the rank 2 cone

Q1 : yz = 0 and the rank 3 cone Q2 : x
2 − wy − wz = 0. As

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1

2

0 0 1
2

0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 −1

2
−1

2

0 1 0 0
−1

2
0 0 0

−1
2

0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

4
st3,

Q1 appears with multiplicity 3 and Q2 with multiplicity 1, and there are no other
singular quadrics in this pencil. The following figure shows Q1, Q2, and C in the chart
w = 1.



4.4. GENERALIZED PRINCIPAL LATTICES IN SPACE 103

The homeomorphism

χ : R× Z2 −→ Cns, (t, a) �−→
{

[t2 : +t : 1 : 0] if a = 0,
[t2 : −t : 0 : 1] if a = 1

turns Cns into a topological group. Moreover, four distinct points χ(t0, 0), χ(t1, 0),
χ(t2, 1), χ(t3, 1) on Cns are coplanar if and only if

0 = det

⎡⎢⎢⎣
t20 +t0 1 0
t21 +t1 1 0
t22 −t2 0 1
t23 −t3 0 1

⎤⎥⎥⎦ = (t2 − t3)(t0 − t1)(t0 + t1 + t2 + t3),

which happens precisely when t0 + t1 + t2 + t3 = 0. It follows that the parameterized
curves

R −→ C1, t �−→ χ(t, 0),

R −→ C2, t �−→ χ(t, 1),

each counted twice, together have Properties P1 and P2. We conclude that C is a
curve that satisfies Property �.

Two lines meeting a conic in distinct points

Suppose that C is the union of a nondegenerate conic C1, contained in some hyperplane
H1 ⊂ P

3, and two lines L1, L2 that meet C1 in two distinct points P1, P2 and meet each
other in a point P0 /∈ H1. After applying a projective change of coordinates, we can
assume that C1 and H1 are as in Equation 4.22. By Lemma 22, we can assume that
P1 = [1 : 0 : 0 : 0] and P2 = [0 : 0 : 1 : 0]. Writing P0 = [w0 : x0 : y0 : 1] and changing
coordinates by a projectivity of P3 with matrix⎡⎢⎢⎣

1 0 0 −w0

0 1 0 −x0
0 0 1 −y0
0 0 0 1

⎤⎥⎥⎦ ,
we can assume that P0 = [0 : 0 : 0 : 1], L1 : x = y = 0, and L2 : w = x = 0.
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The homeomorphism χ : R× Z2 × Z3 −→ Cns defined by

(t, a, b) �−→

⎧⎨⎩
[ 1 : (−1)aet : e2t : 0 ] if b = 0,
[ (−1)aet : 0 : 0 : 1 ] if b = 1,
[ 0 : 0 : 1 : (−1)aet ] if b = 2

turns Cns into a topological group. Moreover, any four distinct points χ(t0, a0, 0),
χ(t1, a1, 0), χ(t2, a2, 1), χ(t3, a3, 2) on Cns are coplanar if and only if

0 = det

⎡⎢⎢⎣
1 (−1)a0et0 e2t0 0
1 (−1)a1et1 e2t1 0

(−1)a2et2 0 0 1
0 0 1 (−1)a3et3

⎤⎥⎥⎦
=

(
(−1)a1et1 − (−1)a0et0

)
·
(
(−1)a0+a1+a2+a3et0+t1+t2+t3 − 1

)
,

which happens precisely when a0 + a1 + a2 + a3 = 0 and t0 + t1 + t2 + t3 = 0. It follows
that the parameterized curves

R× Z2 −→ C1, (t, a) �−→ χ(t, a, 0), (counted twice)

R× Z2 −→ L1, (t, a) �−→ χ(t, a, 1),

R× Z2 −→ L2, (t, a) �−→ χ(t, a, 2),

together satisfy Properties P1 and P2. We conclude that C is a curve that satisfies
Property �.

The curve C is difficult to draw, as none of the charts of P3 shows all components
of C. Changing coordinates by the projectivity of P3 with matrix⎡⎢⎢⎣

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ ,
one obtains a curve C that is the base locus of the pencil of quadrics spanned by the
rank 2 cone Q1 : xz = 0 and the rank 3 cone Q2 : x

2 − (w − z)y = 0. As

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 1

2

0 0 0 0
0 1

2
0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 −1

2
0

0 1 0 0
−1

2
0 0 1

2

0 0 1
2

0

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

16
s2t2,

both of these quadrics appear with multiplicity 2, and there are no other singular
quadrics in the pencil. The following figure shows Q1, Q2, and C in the chart w = 1.
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Two lines meeting a conic in the same point

Suppose that C is the union of a conic C1, contained in some plane H1 ⊂ P
3, and

two lines L+, L− that meet C1 transversely in a single point P , such that the plane
H2 spanned by L+ and L− contains the tangent line to C1 at P . After applying a
projective change of coordinates, we can assume that C1 and H1 are as in Equation
4.22. By Lemma 22, we can assume that P = [1 : 0 : 0 : 0]. As H2 contains the tangent
line TPC1 : y = z = 0, it must be of the form H2 : y− y0z = 0 for some real number y0.
Since L+, L− meet C1 transversely in P , it follows that there exist points of the form
P± = [1 : x1 ± x2 : y0 : 1] in L±. Changing coordinates by a projectivity of P3 with
matrix⎡⎢⎢⎣

1
x2
2

0 0 1− 1
x2
2

0 1
x2

0 −x1

x2

0 0 1 −y0
0 0 0 1

⎤⎥⎥⎦ ,
we can assume that P± = [1 : ±1 : 0 : 1] and L± : y = x∓ z = 0.

The curve C is the base locus of the pencil of quadrics spanned by Q1 : yz = 0 and
Q2 : x

2 − wy − z2 = 0. As

det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1

2

0 0 1
2

0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 −1

2
0

0 1 0 0
−1

2
0 0 0

0 0 0 −1

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

4
t4,

the rank 2 cone Q1 appears with multiplicity 4, and there are no other singular quadrics
in the pencil. The following figure shows Q1, Q2, and C in the chart w = 1.

The homeomorphism

χ : R× Z3 −→ Cns, (t, a) �−→

⎧⎨⎩
[ t2 : t : 1 : 0 ] if a = 0,
[ −2t : 1 : 0 : 1 ] if a = 1,
[ −2t : 1 : 0 : −1 ] if a = 2

turns Cns into a topological group. Moreover, any four distinct points χ(t0, 0), χ(t1, 0),
χ(t2, 1), χ(t3, 2) on Cns are coplanar if and only if

0 = det

⎡⎢⎢⎣
t20 t0 1 0
t21 t1 1 0

−2t2 1 0 1
−2t3 1 0 −1

⎤⎥⎥⎦ = 2(t0 − t1)(t0 + t1 + t2 + t3),
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which happens precisely when t0 + t1 + t2 + t3 = 0. It follows that the parameterized
curves

R −→ C1, t �−→ χ(t, 0), (counted twice)

R −→ L+, t �−→ χ(t, 1),

R −→ L−, t �−→ χ(t, 2),

together have Properties P1 and P2. We conclude that C is a curve that satisfies
Property �.

4.4.9 Union of four lines

Suppose that C is the union of four lines L0, L1, L2, L3 and that C is the complete
intersection of two quadric surfaces. By Section 4.4.4, C must either be a skew quadri-
lateral (characteristic [(11)(11)] in Table 4.2), or the union of four concurrent lines,
no three of which span a plane (which is the cone over a configuration of points with
characteristic [111] in Table 4.3).

A union of four lines that form a skew quadrilateral

We start with a characterization of these curves that will make it easy to give explicit
examples. We say that four planes H0, H1, H2, H3 are in general position if H0 ∩H1 ∩
H2 ∩H3 = ∅, or equivalently if

det

⎡⎢⎢⎣
H0

H1

H2

H3

⎤⎥⎥⎦ �= 0, (4.24)

where we denote the coordinate (row) vector of Hi by Hi as well.

Proposition 24. Any skew quadrilateral C ⊂ P
3 is the base locus of a pencil of quadrics

spanned by two rank 2 quadrics Q = H0 ∪H2 and Q′ = H1 ∪H3, for which the planes
H0, H1, H2, H3 are in general position. Conversely, the base locus of any such pencil is
a skew quadrilateral.

Proof. Suppose C is the union of four lines L01, L12, L23, L30, no three of which are
coplanar, for which any two consecutive lines Li−1,i and Li,i+1 intersect. Here we think
of the indices as elements of Z4, so that L34 = L30. Let Hi denote the plane spanned
by the lines Li−1,i and Li,i+1. Then the planes H0, H1, H2, H3 are in general position.
Writing Q = H0 ∪H2 and Q′ = H1 ∪H3, it follows that

Q ∩Q′ = (H0 ∩H1) ∪ (H1 ∩H2) ∪ (H2 ∩H3) ∪ (H3 ∩H0) = L01 ∪ L12 ∪ L23 ∪ L30

and that C is the base locus of the pencil of quadrics spanned by Q and Q′.
Conversely, let C be the base locus of the pencil of quadrics spanned by two quadrics

Q = H0 ∪ H2 and Q′ = H1 ∪ H3 for which the planes Hi are in general position (as
in Equation 4.24). Then C = L01 ∪ L12 ∪ L23 ∪ L30, where Li,i+1 := Hi ∩ Hi+1. Any
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two consecutive lines Li−1,i, Li,i+1 span the plane Hi and meet in the point Pi ∈ P
3 for

which

span{Pi} = ker

⎡⎣ Hi−1

Hi

Hi+1

⎤⎦ . (4.25)

Moreover, the lines L01, L23 (and similarly the lines L12, L30) do not lie in a plane H,
as this would imply the existence of [α : β], [α′ : β′] ∈ P

1 for which

αH0 + βH1 = H = α′H2 + β′H3,

contradicting the requirement that H0, H1, H2, H3 are in general position. In particular
no three of the four lines can lie in a plane. We conclude that C is a union of four
lines, no three of which are coplanar, that intersect cyclically. That is, C is a skew
quadrilateral.

As an example, suppose C is the union of four lines L01, L12, L23, L30 such that
Li,i+1 = Hi ∩Hi+1 with

H0 : y = 0, H1 : z = 0, H2 : w = 0, H3 : x = 0.

Then

P0 = [1 : 0 : 0 : 0], P1 = [0 : 1 : 0 : 0],

P2 = [0 : 0 : 1 : 0], P3 = [0 : 0 : 0 : 1]

are as in Equation 4.25. Consider the homeomorphism χ : (R × Z2) × (Z2)
2 −→ Cns

defined by

(t, a, b, c) �−→

⎧⎪⎪⎨⎪⎪⎩
[−(−1)aet : 0 : 0 : 1] if (b, c) = (0, 0),
[1 : −(−1)aet : 0 : 0] if (b, c) = (1, 0),
[0 : 1 : −(−1)aet : 0] if (b, c) = (0, 1),
[0 : 0 : 1 : −(−1)aet] if (b, c) = (1, 1).

Any four distinct points

χ(t0, a0, 0, 0), χ(t1, a1, 1, 0), χ(t2, a2, 0, 1), χ(t3, a3, 1, 1)

are coplanar if and only if

0 = det

⎡⎢⎢⎣
−(−1)a0et0 0 0 1

1 −(−1)a1et1 0 0
0 1 −(−1)a2et2 0
0 0 1 −(−1)a3et3

⎤⎥⎥⎦
= −1 + (−1)a0+a1+a2+a3et0+t1+t2+t3 ,

which happens if and only if a0 + a1 + a2 + a3 = 0 and t0 + t1 + t2 + t3 = 0. It follows
that the four parameterized curves

R× Z2 −→ L30, (t, a) �−→ χ(t, a, 0, 0),
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R× Z2 −→ L01, (t, a) �−→ χ(t, a, 1, 0),

R× Z2 −→ L12, (t, a) �−→ χ(t, a, 0, 1),

R× Z2 −→ L23, (t, a) �−→ χ(t, a, 1, 1)

together have Properties P1 and P2. We conclude that C is a curve that satisfies
Property �.

Now let P ′
0, P

′
1, P

′
2, P

′
3 be four linearly independent points of P3, and consider the

curve C ′ = L′
01 ∪ L′

12 ∪ L′
23 ∪ L′

30 ⊂ P
3, where L′

i,i+1 is the line passing through P ′
i and

P ′
i+1 for i = 0, 1, 2, 3 mod 4. The projectivity ψ of P3 with matrix⎡⎣P ′

0 P ′
1 P ′

2 P ′
3

⎤⎦
sends Li,i+1 to L′

i,i+1 for i = 0, 1, 2, 3 mod 4, and the homeomorphism χ′ := ψ ◦ χ :
(R×Z2)×(Z2)

2 −→ C ′
ns turns C

′
ns into a topological group. By construction, the curve

C ′ satisfies Property �.
In particular, for the points

P ′
0 = [1 : 0 : 0 : 0], P ′

1 = [1 : 1 : 0 : 0],

P ′
2 = [1 : 0 : 1 : 0], P ′

3 = [1 : 0 : 0 : 1],

one finds a curve C ′ that is the union of the four lines

L′
01 : y = z = 0, L′

12 : z = x+ y + z − w = 0,

L′
23 : x+ y + z − w = x = 0, L′

30 : x = y = 0.

These lines form the base locus of the pencil of quadrics spanned by Q : xz = 0 and
Q′ : y(x+y+z−w) = 0. The singular quadrics in this pencil are the quadrics sQ+ tQ′

for which

0 = det

⎛⎜⎜⎝s
⎡⎢⎢⎣
0 0 0 0
0 0 0 1

2

0 0 0 0
0 1

2
0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 0 −1

2
0

0 0 1
2

0
−1

2
1
2

1 1
2

0 0 1
2

0

⎤⎥⎥⎦
⎞⎟⎟⎠ =

1

16
s2t2.

It follows that the rank 2 quadrics Q and Q′ appear in this pencil with multiplicity
2, and there are no other singular quadrics in this pencil. The following figure shows
Q,Q′, and C ′ in the chart w = 1.
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Four concurrent lines, no three of which span a plane

As in the previous section, we start with a characterization of these curves that will
make it easy to give explicit examples.

Proposition 25. Any curve C ⊂ P
3 that is the union of four concurrent lines, no

three of which are coplanar, is the base locus of a pencil of quadrics spanned by two
rank 2 quadrics Q = H01 ∪ H23 and Q′ = H02 ∪ H13, for which the coordinate (row)
vectors to the planes H01, H23, H02, H13 form a matrix

M :=

⎡⎢⎢⎣
H01

H23

H02

H13

⎤⎥⎥⎦ (4.26)

of rank 3 in which any three rows are linearly independent. Conversely, the base locus
of any such pencil is the union of four concurrent lines, no three of which are coplanar.

Proof. Let C ⊂ P
3 be the union of four lines L0, L1, L2, L3, no three of which are

coplanar, that meet in a single point P . Write Hij for the plane spanned by Li and Lj,
and let Q = H01 ∪H23 and Q′ = H02 ∪H13. Since no three of the lines are coplanar,
one finds

Q ∩Q′ = (H01 ∩H02) ∪ (H01 ∩H13) ∪ (H23 ∩H02) ∪ (H23 ∩H13)

= L0 ∪ L1 ∪ L2 ∪ L3

and C is the base locus of the pencil of quadrics spanned by Q and Q′. Note that
the matrix M from Equation 4.26 has rank 3, as all planes meet in a single point P .
Moreover, no three of the planes share a line, as no three of the lines are coplanar. It
follows that any three rows in M are linearly independent.

Conversely, suppose C ⊂ P
3 is the intersection of two rank 2 quadrics Q = H01 ∪

H23, Q
′ = H02∪H13 for which the matrixM in Equation 4.26 has rank 3 and any three

of the four rows are linearly independent. Define lines

L0 := H01 ∩H02, L1 := H01 ∩H13,

L2 := H23 ∩H02, L3 := H23 ∩H13.

As rank(M) = 3, the lines L0, L1, L2, L3 meet in a single point P . No three of the
lines, say L0, L1, L2, lie in a plane H, as this would imply the existence of [α0 : β0], [α1 :
β1], [α2 : β2] ∈ P

1 for which

H = α0H01 + β0H02 = α1H01 + β1H13 = α2H23 + β2H02,

contradicting the assumption that any three of the planes are linearly independent. We
conclude that C is the union of four concurrent lines, no three of which are coplanar.

Suppose we are given a curve C that is the union of four concurrent lines L0, L1, L2,
L3, no three of which are coplanar. Denote the point of intersection by P , and let
H be any plane that intersects C in four distinct points R0, R1, R2, R3 on the lines
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L0, L1, L2, L3. Since no three of the lines are coplanar, the points Ri are in general
position inside the plane H (that is, no three of them are collinear). After applying
a projectivity, we may assume that P = [0 : 0 : 0 : 1] and H is the plane defined by
z = 0. Since the points Ri are in general position inside the plane H, the fundamental
theorem for projectivities implies that we can assume that

R0 = [1 : 0 : 0 : 0], R1 = [1 : 1 : 0 : 0],

R2 = [1 : 0 : 1 : 0], R3 = [1 : 1 : 1 : 0],

so that the components of C are given by

L0 : x = y = 0, L1 : x− w = y = 0,

L2 : x = y − w = 0, L3 : x− w = y − w = 0.

The curve C is the base locus of the pencil of quadrics spanned by Q = H01 ∪H23 and
Q′ = H02 ∪H13, where

H01 : y = 0, H23 : y − w = 0,

H02 : x = 0, H13 : x− w = 0.

Any quadric sQ+ tQ′ in the pencil has matrix

s

⎡⎢⎢⎣
0 0 −1

2
0

0 0 0 0
−1

2
0 1 0

0 0 0 0

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
0 −1

2
0 0

−1
2

1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 −1

2
t −1

2
s 0

−1
2
t t 0 0

−1
2
s 0 s 0

0 0 0 0

⎤⎥⎥⎦ ,
implying that a generic quadric in the pencil is a rank 3 cone. As

det

⎡⎣ 0 − t
2

− s
2

− t
2

t 0
− s

2
0 s

⎤⎦ = −1

4
(s+ t)st,

the rank 2 quadrics in the pencil are Q,Q′, and Q − Q′, each of multiplicity 1. The
following figure shows Q,Q′, and C in the chart w = 1.
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Consider the homeomorphism

χ : R× (Z2)
2 −→ Cns, (t, a, b) �−→

⎧⎪⎪⎨⎪⎪⎩
[
1 : 0 : 0 : +t

]
if (a, b) = (0, 0),[

1 : 1 : 0 : −t
]

if (a, b) = (1, 0),[
1 : 0 : 1 : −t

]
if (a, b) = (0, 1),[

1 : 1 : 1 : +t
]

if (a, b) = (1, 1).

Any four distinct points χ(t0, 0, 0), χ(t1, 1, 0), χ(t2, 0, 1), χ(t3, 1, 1) of Cns are coplanar
if and only if

0 = det

⎡⎢⎢⎣
1 0 0 +t0
1 1 0 −t1
1 0 1 −t2
1 1 1 +t3

⎤⎥⎥⎦ = t0 + t1 + t2 + t3.

It follows that the four parameterized curves

R −→ L0, t �−→ χ(t, 0, 0),

R −→ L1, t �−→ χ(t, 1, 0),

R −→ L2, t �−→ χ(t, 0, 1),

R −→ L3, t �−→ χ(t, 1, 1)

together have Properties P1 and P2. We conclude that C is a curve that satisfies
Property �.
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Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520. MR1325915 (96g:05008)

[28] D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag,
New York, 1995. With a view toward algebraic geometry. MR1322960 (97a:13001)

[29] , The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag,
New York, 2005. A second course in commutative algebra and algebraic geometry. MR2103875
(2005h:13021)

[30] J. F. Epperson, On the Runge example, Amer. Math. Monthly 94 (1987), no. 4, 329–341, DOI
10.2307/2323093. MR883286 (88c:41003)
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