134 research outputs found

    Expression pattern of STAT5A gene during early bovine embryogenesis

    Get PDF
    Growth hormone (GH) plays an important role in early embryo development. It has been shown to activate multiple pathways, the most comprehensively studied being the STAT/JAK (Signal transducers and activators of transcription/Janus kinase) pathway. The objective of the present study was to investigate STAT5A gene expression during early bovine embryogenesis. Real-time polymerase chain reaction (RT-PCR) was used to measure the abundance of STAT5A transcripts. The mRNA was present at all stages of preimplantation bovine embryos investigated. The most abundant STAT5A expression occurred at the 2-cell stage. Expression was markedly reduced between the 4-cell and 8-cell stages, coinciding with the known time of embryo genome activation and loss of maternal mRNAs. This finding suggests that the embryonic STAT5A gene is primarily activated by maternal gene products

    Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Get PDF
    Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs) and live pigs carrying a latent TP53(R167H) mutant allele, orthologous to oncogenic human mutant TP53(R175H) and mouse Trp53(R172H), that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H) mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H) allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H) mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal

    Combining evidence of selection with association analysis increases power to detect regions influencing complex traits in dairy cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hitchhiking mapping and association studies are two popular approaches to map genotypes to phenotypes. In this study we combine both approaches to complement their specific strengths and weaknesses, resulting in a method with higher statistical power and fewer false positive signals. We applied our approach to dairy cattle as they underwent extremely successful selection for milk production traits and since an excellent phenotypic record is available. We performed whole genome association tests with a new mixed model approach to account for stratification, which we validated via Monte Carlo simulations. Selection signatures were inferred with the integrated haplotype score and a locus specific permutation based integrated haplotype score that works with a folded frequency spectrum and provides a formal test of signifance to identify selection signatures.</p> <p>Results</p> <p>About 1,600 out of 34,851 SNPs showed signatures of selection and the locus specific permutation based integrated haplotype score showed overall good accordance with the whole genome association study. Each approach provides distinct information about the genomic regions that influence complex traits. Combining whole genome association with hitchhiking mapping yielded two significant loci for the trait protein yield. These regions agree well with previous results from other selection signature scans and whole genome association studies in cattle.</p> <p>Conclusion</p> <p>We show that the combination of whole genome association and selection signature mapping based on the same SNPs increases the power to detect loci influencing complex traits. The locus specific permutation based integrated haplotype score provides a formal test of significance in selection signature mapping. Importantly it does not rely on knowledge of ancestral and derived allele states.</p

    Renewable Energy in the Pomerania Voivodeship - Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation

    Get PDF
    In the era of globalization and rapid economic growth, affecting most world economies, increased production and consumption are leading to higher levels of energy production and consumption. The growing demand for energy means that energy resources from conventional sources are not sufficient; moreover, its production generates high costs and contributes to the emission of greenhouse gases and waste. In view of the above, many countries have opted to implement an energy transformation. The energy transition allows the transition from an energy system based on conventional fuels to an energy system based mainly on renewable energy (RE) and low-emission sources. In the EU, the development of a “green economy” has become a strategic goal in the fight against climate change. The development of RE offers the possibility to improve the energy security of a given country and the entire EU. New, innovative technologies of RE also increase the attractiveness and competitiveness of the economies of the Member States. In line with the EU strategy, the activities carried out aim to achieve a situation in which, in 2050, the activities of economies will not endanger the environment. The main purpose of this article was the assessment of the RE sector in the Pomerania region in the context of energy transformation. To achieve this goal, PEST analysis regarding the functioning of the RE sector in the selected Polish region was used and the potential of the RE sector was determined using GIS tools on the basis of physical conditions. The article presents the research hypothesis that the RE sector within the Pomerania Voivodeship possesses appropriate energy potential, which will allow this Voivodeship to become an energy self-sufficient region based on the use of these energy sources (according to EU strategy). The implementation of the goal set in the article allowed for the verification of the research hypothesis, where the determined energy potential from the RE sector would cover the Voivodeship’s needs due to the use of electricity and heat. The conducted research shows that the RE sector in these regions has high energy potential to meet the criteria outlined in EU legal documents and to implement them successfully within the intended period

    Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery

    Get PDF
    The next generation sequencing of a single cow genome with low-to-medium coverage has revealed 2.44 million new SNPs

    Dual Fluorescent Reporter Pig for Cre Recombination: Transgene Placement at the ROSA26 Locus

    Get PDF
    We are extending the Cre/loxP site-specific recombination system to pigs, focussing on conditional and tissue-specific expression of oncogenic mutations to model human cancers. Identifying the location, pattern and extent of Cre recombination in vivo is an important aspect of this technology. Here we report pigs with a dual fluorochrome cassette under the control of the strong CAG promoter that switches expression after Cre-recombination, from membrane-targeted tandem dimer Tomato to membrane-targeted green fluorescent protein. The reporter cassette was placed at the porcine ROSA26 locus by conventional gene targeting using primary mesenchymal stem cells, and animals generated by nuclear transfer. Gene targeting efficiency was high, and analysis of foetal organs and primary cells indicated that the reporter is highly expressed and functional. Cre reporter pigs will provide a multipurpose indicator of Cre recombinase activity, an important new tool for the rapidly expanding field of porcine genetic modification

    Cas9-expressing chickens and pigs as resources for genome editing in livestock

    Get PDF
    Genetically modified animals continue to provide important insights into the molecular basis of health and disease. Research has focused mostly on genetically modified mice, although other species like pigs resemble the human physiology more closely. In addition, cross-species comparisons with phylogenetically distant species such as chickens provide powerful insights into fundamental biological and biomedical processes. One of the most versatile genetic methods applicable across species is CRISPR-Cas9. Here, we report the generation of transgenic chickens and pigs that constitutively express Cas9 in all organs. These animals are healthy and fertile. Functionality of Cas9 was confirmed in both species for a number of different target genes, for a variety of cell types and in vivo by targeted gene disruption in lymphocytes and the developing brain, and by precise excision of a 12.7-kb DNA fragment in the heart. The Cas9 transgenic animals will provide a powerful resource for in vivo genome editing for both agricultural and translational biomedical research, and will facilitate reverse genetics as well as cross-species comparisons

    Acquiring Resistance Against a Retroviral Infection via CRISPR/Cas9 Targeted Genome Editing in a Commercial Chicken Line

    Get PDF
    Genome editing technology provides new possibilities for animal breeding and aid in understanding host-pathogen interactions. In poultry, retroviruses display one of the most difficult pathogens to control by conventional strategies such as vaccinations. Avian leukosis virus subgroup J (ALV-J) is an oncogenic, immunosuppressive retrovirus that causes myeloid leukosis and other tumors in chickens. Severe economic losses caused by ALV-J remain an unsolved problem in many parts of the world due to inefficient eradication strategies and lack of effective vaccines. ALV-J attachment and entry are mediated through the specific receptor, chicken Na+/H+ exchanger type 1 (chNHE1). The non-conserved amino acid tryptophan 38 (W38) in chNHE1 is crucial for virus entry, making it a favorable target for the introduction of disease resistance. In this study, we obtained ALV-J-resistance in a commercial chicken line by precise deletion of chNHE1 W38, utilizing the CRISPR/Cas9-system in combination with homology directed repair. The genetic modification completely protected cells from infection with a subgroup J retrovirus. W38 deletion did neither have a negative effect on the development nor on the general health condition of the gene edited chickens. Overall, the generation of ALV-J-resistant birds by precise gene editing demonstrates the immense potential of this approach as an alternative disease control strategy in poultry

    Nucleotide sequence and variations of the bovine myocyte enhancer factor 2C (MEF2C) gene promoter in Bos Taurus cattle

    Get PDF
    Myocyte Enhancer Factor 2 (MEF2) proteins are a small family of transcription factors that play pivotal role in morphogenesis and myogenesis of skeletal, cardiac, and smooth muscle cells. In vertebrates, there are four MEF2 genes, referred to as MEF2A, -B, -C, and -D, that are located on different chromosomes. After birth MEF2A, MEF2B, MEF2D transcriptions are expressed ubiquitously, whereas MEF2C transcripts are restricted to skeletal muscle, brain, and spleen. In this study, on the basis of the sequences of the bovine chromosome 7 genomic contig, available in the GenBank database, sets of PCR primers were designed and to amplify the bovine MEF2C gene promoter region, exon 1 (5′UTR) and part sequence of the intron 1. Seven overlapping fragments of the bovine MEF2C gene were amplified and then sequenced. Altogether, these fragments were composed in the 3,120-bp sequence which was deposited in the GenBank database under accession no. GU211007. The sequence fragment included the putative site of the promoter region and transcription start of the exon 1. The sequence analysis of these fragments in individual animals representing different Bos taurus breeds revealed four variations in promoter region: g.-1606C>T, g.-1336_-1335DelG, g.-818C>T, g.-613_-612DelA and four SNPs within intron 1: g.2711A>G, g. 2913A>G, g.2962G>T and g.3014A>G. No polymorphism was found within sequence of the exon 1 (5′UTR). These polymorphisms were identified for first time using these sequences and were confirmed by RFLP or MSSCP methods

    Elevated circulating Hsp70 levels are correlative for malignancies in different mammalian species

    Full text link
    Circulating Hsp70 levels were determined in feline and porcine cohorts using two different ELISA systems. These comparative animal models of larger organisms often reflect diseases, and especially malignant tumors, better than conventional rodent models. It is therefore essential to investigate the biology and utility of tumor biomarkers in animals such as cats and pigs. In this study, levels of free Hsp70 in the blood of cats with spontaneously occurring tumors were detected using a commercial Hsp70 ELISA (R&D Systems). Sub-analysis of different tumor groups revealed that animals with tumors of epithelial origin presented with significantly elevated circulating Hsp70 concentrations. In addition to free Hsp70 levels measured with the R&D Systems Hsp70 ELISA, levels of exosomal Hsp70 were determined using the compHsp70 ELISA in pigs. Both ELISA systems detected significantly elevated Hsp70 levels (R&D Systems: median 24.9 ng/mL; compHsp70: median 44.2 ng/mL) in the blood of a cohort of APC1311/+^{1311/+} pigs diagnosed with high-grade adenoma polyps, and the R&D Systems Hsp70 ELISA detected also elevated Hsp70 levels in animals with low-grade polyps. In contrast, in flTP53R167H^{R167H} pigs, suffering from malignant osteosarcoma, the compHsp70 ELISA (median 674.32 ng/mL), but not the R&D Systems Hsp70 ELISA (median 4.78 ng/mL), determined significantly elevated Hsp70 concentrations, indicating that in tumor-bearing animals, the dominant form of Hsp70 is of exosomal origin. Our data suggest that both ELISA systems are suitable for detecting free circulating Hsp70 levels in pigs with high-grade adenoma, but only the compHsp70 ELISA can measure elevated, tumor-derived exosomal Hsp70 levels in tumor-bearing animals
    • …
    corecore