633 research outputs found

    A distinct plasmablast and naive B-cell phenotype in primary immune thrombocytopenia

    Get PDF
    Obtained from the Haematologica Journal website http://www.haematologica.org/content/101/6/698.full.pdf+html Material published in Haematologica is covered by copyright. All rights reserved to Ferrata Storti Foundation. Copies of articles are allowed for personal or internal use. A permission in writing by the publisher is requested for any other use.Primary funding for this study was from GSK. SMF was funded by a Translational Medicine and Therapeutics PhD studentship jointly funded by the Wellcome Trust and GSK. The UK ITP Registry (www.ukitpregistry.com) is supported through unrestricted educational grants from GSK and Amgen

    Integrated analysis of dermal blister fluid proteomics and genome-wide skin gene expression in systemic sclerosis: an observational study

    Get PDF
    Background: Skin fibrosis is a hallmark feature of systemic sclerosis. Skin biopsy transcriptomics and blister fluid proteomics give insight into the local environment of the skin. We have integrated these modalities with the aim of developing a surrogate for the modified Rodnan skin score (mRSS), using candidate genes and proteins from the skin and blister fluid as anchors to identify key analytes in the plasma. Methods: In this single-centre, prospective observational study at the Royal Free Campus, University College London, London, UK, transcriptional and proteomic analyses of blood and skin were performed in a cohort of patients with systemic sclerosis (n=52) and healthy controls (n=16). Weighted gene co-expression network analysis was used to explore the association of skin transcriptomics data, clinical traits, and blister fluid proteomic results. Candidate hub analytes were identified as those present in both blister and skin gene sets (modules), and which correlated with plasma (module membership >0·7 and gene significance >0·6). Hub analytes were confirmed using RNA transcript data obtained from skin biopsy samples from patients with early diffuse cutaneous systemic sclerosis at 12 months. Findings: We identified three modules in the skin, and two in blister fluid, which correlated with a diagnosis of early diffuse cutaneous systemic sclerosis. From these modules, 11 key hub analytes were identified, present in both skin and blister fluid modules, whose transcript and protein levels correlated with plasma protein concentrations, mRSS, and showed statistically significant correlation on repeat transcriptomic samples taken at 12 months. Multivariate analysis identified four plasma analytes as correlates of mRSS (COL4A1, COMP, SPON1, and TNC), which can be used to differentiate disease subtype. Interpretation: This unbiased approach has identified potential biological candidates that might be drivers of local skin pathogenesis in systemic sclerosis. By focusing on measurable analytes in the plasma, we generated a promising composite plasma protein biomarker that could be used for assessment of skin severity, case stratification, and as a potential outcome measure for clinical trials and practice. Once fully validated, the biomarker score could replace a clinical score such as the mRSS, which carries substantial variability. Funding: GlaxoSmithKline and UK Medical Research Council

    Molecular basis for clinical diversity between autoantibody subsets in diffuse cutaneous systemic sclerosis.

    Get PDF
    OBJECTIVES: Clinical heterogeneity is a cardinal feature of systemic sclerosis (SSc). Hallmark SSc autoantibodies are central to diagnosis and associate with distinct patterns of skin-based and organ-based complications. Understanding molecular differences between patients will benefit clinical practice and research and give insight into pathogenesis of the disease. We aimed to improve understanding of the molecular differences between key diffuse cutaneous SSc subgroups as defined by their SSc-specific autoantibodies METHODS: We have used high-dimensional transcriptional and proteomic analysis of blood and the skin in a well-characterised cohort of SSc (n=52) and healthy controls (n=16) to understand the molecular basis of clinical diversity in SSc and explore differences between the hallmark antinuclear autoantibody (ANA) reactivities. RESULTS: Our data define a molecular spectrum of SSc based on skin gene expression and serum protein analysis, reflecting recognised clinical subgroups. Moreover, we show that antitopoisomerase-1 antibodies and anti-RNA polymerase III antibodies specificities associate with remarkably different longitudinal change in serum protein markers of fibrosis and divergent gene expression profiles. Overlapping and distinct disease processes are defined using individual patient pathway analysis. CONCLUSIONS: Our findings provide insight into clinical diversity and imply pathogenetic differences between ANA-based subgroups. This supports stratification of SSc cases by ANA antibody subtype in clinical trials and may explain different outcomes across ANA subgroups in trials targeting specific pathogenic mechanisms

    Deep-water Tectono-Stratigraphy at a Plate Boundary Constrained by Large N-Detrital Zircon and Micropaleontological Approaches: Peninsular Ranges Forearc, Baja California, Mexico

    Get PDF
    The distribution of sedimentary systems on Earth’s surface is intimately linked to tectonics, therefore, at plate boundaries the stratigraphic archive can unlock the timing and style of tectonism and relative plate motions. Using large-n detrital zircon and micropaleontological analyses, tied to field mapping and data collection, we unravel the timing of strike-slip motion and its influence on the development of a Cretaceous submarine canyon on a long-lived oblique-convergent margin. Structural analysis demonstrates that the canyon bedrock, composed of fluvial rocks (La Bocana Roja Fm., of maximum depositional age (MDA): 93.6±1.1 Ma), underwent both syn- and post-depositional contractional and extensional deformation during the Cenomanian-Turonian in response to dextral strike-slip movement. Relative sea-level rise associated with basin subsidence and hinterland uplift was coincident with incision and fill of a submarine canyon system (Punta Baja Fm., MDA 87.1±1.5 Ma to 84.9±2.0 Ma), which exploited structural lineaments in the bedrock. The canyon was filled by sediment derived from an uplifted magmatic arc during the Coniacian to Santonian, most likely shed from erosional topography associated with plutonic intrusions to the NE. Structural data suggest that oblique dextral strike-slip motion on the Pacific margin controlled the development and location of submarine erosion, and had ended by the earliest Santonian, significantly earlier than previously estimated. Basinward tilting led to uplift, followed by transgression and wave ravinement of the canyon fill, which was then overlain by a shallow-marine to fluvial system. Thus, the canyon was cut, filled, buried, uplifted and rotated basinward, planed off through wave ravinement, and onlapped by shallow-marine to fluvial sediments within an 8 Myr period. Our findings, in part, reconcile contrasting basin evolution models for the Late Mesozoic Pacific margin

    Lactate signalling regulates fungal β-glucan masking and immune evasion

    Get PDF
    AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin

    Climate Mitigation through Biological Conservation: Extensive and Valuable Blue Carbon Natural Capital in Tristan da Cunha’s Giant Marine Protected Zone

    Get PDF
    Carbon-rich habitats can provide powerful climate mitigation if meaningful protection is put in place. We attempted to quantify this around the Tristan da Cunha archipelago Marine Protected Area. Its shallows (&lt;1000 m depth) are varied and productive. The 5.4 km2 of kelp stores ~60 tonnes of carbon (tC) and may export ~240 tC into surrounding depths. In deep-waters we analysed seabed data collected from three research cruises, including seabed mapping, camera imagery, seabed oceanography and benthic samples from mini-Agassiz trawl. Rich biological assemblages on seamounts significantly differed to the islands and carbon storage had complex drivers. We estimate ~2.3 million tC are stored in benthic biodiversity of waters &lt;1000 m, which includes &gt;0.22 million tC that can be sequestered (the proportion of the carbon captured that is expected to become buried in sediment or locked away in skeletal tissue for at least 100 years). Much of this carbon is captured by cold-water coral reefs as a mixture of inorganic (largely calcium carbonate) and organic compounds. As part of its 2020 Marine Protection Strategy, these deep-water reef systems are now protected by a full bottom-trawling ban throughout Tristan da Cunha and representative no take areas on its seamounts. This small United Kingdom Overseas Territory’s reef systems represent approximately 0.8 Mt CO2 equivalent sequestered carbon; valued at &gt;£24 Million GBP (at the UN shadow price of carbon). Annual productivity of this protected standing stock generates an estimated £3 million worth of sequestered carbon a year, making it an unrecognized and potentially major component of the economy of small island nations like Tristan da Cunha. Conservation of near intact habitats are expected to provide strong climate and biodiversity returns, which are exemplified by this MPA.</jats:p

    Genetics of callous-unemotional behavior in children

    Get PDF
    Callous-unemotional behavior (CU) is currently under consideration as a subtyping index for conduct disorder diagnosis. Twin studies routinely estimate the heritability of CU as greater than 50%. It is now possible to estimate genetic influence using DNA alone from samples of unrelated individuals, not relying on the assumptions of the twin method. Here we use this new DNA method (implemented in a software package called Genome-wide Complex Trait Analysis, GCTA) for the first time to estimate genetic influence on CU. We also report the first genome-wide association (GWA) study of CU as a quantitative trait. We compare these DNA results to those from twin analyses using the same measure and the same community sample of 2,930 children rated by their teachers at ages 7, 9 and 12. GCTA estimates of heritability were near zero, even though twin analysis of CU in this sample confirmed the high heritability of CU reported in the literature, and even though GCTA estimates of heritability were substantial for cognitive and anthropological traits in this sample. No significant associations were found in GWA analysis, which, like GCTA, only detects additive effects of common DNA variants. The phrase ‘missing heritability’ was coined to refer to the gap between variance associated with DNA variants identified in GWA studies versus twin study heritability. However, GCTA heritability, not twin study heritability, is the ceiling for GWA studies because both GCTA and GWA are limited to the overall additive effects of common DNA variants, whereas twin studies are not. This GCTA ceiling is very low for CU in our study, despite its high twin study heritability estimate. The gap between GCTA and twin study heritabilities will make it challenging to identify genes responsible for the heritability of CU

    Impact of physical activity level and dietary fat content on passive overconsumption of energy in non-obese adults

    Get PDF
    Background: Passive overconsumption is the increase in energy intake driven by the high-fat energy-dense food environment. This can be explained in part because dietary fat has a weaker effect on satiation (i.e. process that terminates feeding). Habitually active individuals show improved satiety (i.e. process involved in post-meal suppression of hunger) but any improvement in satiation is unknown. Here we examined whether habitual physical activity mitigates passive overconsumption through enhanced satiation in response to a high-fat meal. Methods: Twenty-one non-obese individuals with high levels of physical activity (HiPA) and 19 individuals with low levels of physical activity (LoPA) matched for body mass index (mean = 22.8 kg/m2) were recruited. Passive overconsumption was assessed by comparing ad libitum energy intake from covertly manipulated high-fat (HFAT; 50% fat) or high-carbohydrate (HCHO; 70% carbohydrate) meals in a randomized crossover design. Habitual physical activity was assessed using SenseWear accelerometers (SWA). Body composition, resting metabolic rate, eating behaviour traits, fasting appetite-related peptides and hedonic food reward were also measured. Results: In the whole sample, passive overconsumption was observed with greater energy intake at HFAT compared to HCHO (p  0.05). SWA confirmed that HiPA were more active than LoPA (p  0.05 for all). Conclusions: Non-obese individuals with high or low physical activity levels but matched for BMI showed similar susceptibility to passive overconsumption when consuming an ad libitum high-fat compared to a high-carbohydrate meal. This occurred despite increased total daily energy expenditure and improved body composition in HiPA. Greater differences in body composition and/or physical activity levels may be required to impact on satiation

    Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

    Get PDF
    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism

    Gene–Environment Interactions at Nucleotide Resolution

    Get PDF
    Interactions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a panel of strains that together carry all 32 possible combinations of the 4 QTN genotypes in 2 distinct genetic backgrounds. We then measured the sporulation efficiencies of these 32 strains across 8 controlled environments. This dataset shows that variation in sporulation efficiency is shaped largely by genetic and environmental interactions. We find clear examples of QTN:environment, QTN: background, and environment:background interactions. However, we find no QTN:QTN interactions that occur consistently across the entire dataset. Instead, interactions between QTN only occur under specific combinations of environment and genetic background. Thus, what might appear to be a QTN:QTN interaction in one background and environment becomes a more complex QTN:QTN:environment:background interaction when we consider the entire dataset as a whole. As a result, the phenotypic impact of a set of QTN alleles cannot be predicted from genotype alone. Our results instead demonstrate that the effects of QTN and their interactions are inextricably linked both to genetic background and to environmental variation
    corecore