12,189 research outputs found
A simplified protocol for detecting two systemic bait markers (Rhodamine B and iophenoxic acid) in small mammals
We developed a method of quantifying levels of fluorescence in the whiskers of wild stoats (Mustela erminea) using fluorescence microscopy and Axiovision 3.0.6.1 software. The method allows for discrimination between natural fluorescence present in or on a whisker, and the fluorescence resulting from the ingestion of the systemic marker Rhodamine B (RB), although some visual judgement is still required. We also developed a new high performance liquid chromatography (HPLC) protocol for detecting the systemic marker iophenoxic acid (IPA) in the blood of laboratory rats (Rattus norvegicus) and wild stoats. With this method, the blood of an animal that has consumed IPA can be tested for the presence of the foreign IPA compound itself. This is a more reliable test than the previous method, which measured the raised level of natural blood protein-bound iodine correlated with IPA absorption. The quantity of blood required from animal subjects is very small (10 μl), so the testing is less intrusive and the method can be extended to smaller species. The extraction technique uses methanol, rather than acids and heavy metal salts, thereby simplifying the procedure. Recovery of IPA is quantitative, giving a highly reliable reading. In experiments on captive rats the IPA method proved successful. Of 12 positively marked carcasses, two that had not been frozen for the 24 h before blood samples were taken showed relatively lower IPA levels. The same IPA detection method, as well as the whisker analysis for RB, was applied successfully to a population of wild stoats to which both Rhodamine B and IPA were made available at bait stations. The presence of both bait markers was detectable in rats for at least 21 days and in stoats for at least 27 days
Geometric approach to Fletcher's ideal penalty function
Original article can be found at: www.springerlink.com Copyright Springer. [Originally produced as UH Technical Report 280, 1993]In this note, we derive a geometric formulation of an ideal penalty function for equality constrained problems. This differentiable penalty function requires no parameter estimation or adjustment, has numerical conditioning similar to that of the target function from which it is constructed, and also has the desirable property that the strict second-order constrained minima of the target function are precisely those strict second-order unconstrained minima of the penalty function which satisfy the constraints. Such a penalty function can be used to establish termination properties for algorithms which avoid ill-conditioned steps. Numerical values for the penalty function and its derivatives can be calculated efficiently using automatic differentiation techniques.Peer reviewe
De novo design of a reversible phosphorylation-dependent switch for membrane targeting
Modules that switch protein-protein interactions on and off are essential to develop synthetic biology; for example, to construct orthogonal signaling pathways, to control artificial protein structures dynamically, and for protein localization in cells or protocells. In nature, the E. coli MinCDE system couples nucleotide-dependent switching of MinD dimerization to membrane targeting to trigger spatiotemporal pattern formation. Here we present a de novo peptide-based molecular switch that toggles reversibly between monomer and dimer in response to phosphorylation and dephosphorylation. In combination with other modules, we construct fusion proteins that couple switching to lipid-membrane targeting by: (i) tethering a 'cargo' molecule reversibly to a permanent membrane 'anchor'; and (ii) creating a 'membrane-avidity switch' that mimics the MinD system but operates by reversible phosphorylation. These minimal, de novo molecular switches have potential applications for introducing dynamic processes into designed and engineered proteins to augment functions in living cells and add functionality to protocells. The ability to dynamically control protein-protein interactions and localization of proteins is critical in synthetic biological systems. Here the authors develop a peptide-based molecular switch that regulates dimer formation and lipid membrane targeting via reversible phosphorylation.The authors thank the Biochemistry Core Facility of the Max Planck Institute of Biochemistry for LC-MS and CD spectroscopy services, Stefan Pettera and Stephan Uebel for assistance with peptide synthesis and analytical HPLC, and Katharina Nakel for assistance with cloning
Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling
Functional brain connectivity, as revealed through distant correlations in
the signals measured by functional Magnetic Resonance Imaging (fMRI), is a
promising source of biomarkers of brain pathologies. However, establishing and
using diagnostic markers requires probabilistic inter-subject comparisons.
Principled comparison of functional-connectivity structures is still a
challenging issue. We give a new matrix-variate probabilistic model suitable
for inter-subject comparison of functional connectivity matrices on the
manifold of Symmetric Positive Definite (SPD) matrices. We show that this model
leads to a new algorithm for principled comparison of connectivity coefficients
between pairs of regions. We apply this model to comparing separately
post-stroke patients to a group of healthy controls. We find
neurologically-relevant connection differences and show that our model is more
sensitive that the standard procedure. To the best of our knowledge, these
results are the first report of functional connectivity differences between a
single-patient and a group and thus establish an important step toward using
functional connectivity as a diagnostic tool
Investigating the Magnetospheres of Rapidly Rotating B-type Stars
Recent spectropolarimetric surveys of bright, hot stars have found that ~10%
of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG).
The prominent paradigm describing the interaction between the stellar winds and
the surface magnetic field is the magnetically confined wind shock (MCWS)
model. In this model, the stellar wind plasma is forced to move along the
closed field loops of the magnetic field, colliding at the magnetic equator,
and creating a shock. As the shocked material cools radiatively it will emit
X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and
characterizing the hot wind material confined by the magnetic fields of these
stars. Some B-type stars are found to have very short rotational periods. The
effects of the rapid rotation on the X-ray production within the magnetosphere
have yet to be explored in detail. The added centrifugal force due to rapid
rotation is predicted to cause faster wind outflows along the field lines,
leading to higher shock temperatures and harder X-rays. However, this is not
observed in all rapidly rotating magnetic B-type stars. In order to address
this from a theoretical point of view, we use the X-ray Analytical Dynamical
Magnetosphere (XADM) model, originally developed for slow rotators, with an
implementation of new rapid rotational physics. Using X-ray spectroscopy from
ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-type stars
to add to the previous list of observations. Comparing the observed X-ray
luminosity and hardness ratio to that predicted by the XADM allows us to
determine the role the added centrifugal force plays in the magnetospheric
X-ray emission of these stars.Comment: IAUS Conference Proceeding
de Haas-van Alphen effect investigation of the electronic structure of Al substituted MgB_2
We report a de Haas-van Alphen (dHvA) study of the electronic structure of Al
doped crystals of MgB. We have measured crystals with % Al which
have a of 33.6 K, (% lower than pure MgB). dHvA frequencies
for the tube orbits in the doped samples are lower than in pure
MgB, implying a reduction in the number of holes in this sheet of
Fermi surface. The mass of the quasiparticles on the larger orbit is
lighter than the pure case indicating a reduction in electron-phonon coupling
constant . These observations are compared with band structure
calculations, and found to be in excellent agreement.Comment: 4 pages with figure
Shubnikov-de Haas oscillations in YBa_2Cu_4O_8
We report the observation of Shubnikov-de Haas oscillations in the underdoped
cuprate superconductor YBaCuO (Y124). For field aligned along the
c-axis, the frequency of the oscillations is T, which corresponds
to % of the total area of the first Brillouin zone. The effective
mass of the quasiparticles on this orbit is measured to be times
the free electron mass. Both the frequency and mass are comparable to those
recently observed for ortho-II YBaCuO (Y123-II). We show that
although small Fermi surface pockets may be expected from band structure
calculations in Y123-II, no such pockets are predicted for Y124. Our results
therefore imply that these small pockets are a generic feature of the copper
oxide plane in underdoped cuprates.Comment: v2: Version of paper accepted for publication in Physical Review
Letters. Only minor changes to the text and reference
Transverse Magnetoresistance of GaAs/AlGaAs Heterojunctions in the Presence of Parallel Magnetic Fields
We have calculated the resistivity of a GaAs\slash AlGaAs heterojunction in
the presence of both an in--plane magnetic field and a weak perpendicular
component using a semiclassical Boltzmann transport theory. These calculations
take into account fully the distortion of the Fermi contour which is induced by
the parallel magnetic field. The scattering of electrons is assumed to be due
to remote ionized impurities. A positive magnetoresistance is found as a
function of the perpendicular component, in good qualitative agreement with
experimental observations. The main source of this effect is the strong
variation of the electronic scattering rate around the Fermi contour which is
associated with the variation in the mean distance of the electronic states
from the remote impurities. The magnitude of the positive magnetoresistance is
strongly correlated with the residual acceptor impurity density in the GaAs
layer. The carrier lifetime anisotropy also leads to an observable anisotropy
in the resistivity with respect to the angle between the current and the
direction of the in--plane magnetic field.Comment: uuencoded file containing a 26 page RevTex file and 14 postscript
figures. Submitted to Phys. Rev.
- …