1,230 research outputs found

    Optic nerve head segmentation

    Get PDF
    Reliable and efficient optic disk localization and segmentation are important tasks in automated retinal screening. General-purpose edge detection algorithms often fail to segment the optic disk due to fuzzy boundaries, inconsistent image contrast or missing edge features. This paper presents an algorithm for the localization and segmentation of the optic nerve head boundary in low-resolution images (about 20 /spl mu//pixel). Optic disk localization is achieved using specialized template matching, and segmentation by a deformable contour model. The latter uses a global elliptical model and a local deformable model with variable edge-strength dependent stiffness. The algorithm is evaluated against a randomly selected database of 100 images from a diabetic screening programme. Ten images were classified as unusable; the others were of variable quality. The localization algorithm succeeded on all bar one usable image; the contour estimation algorithm was qualitatively assessed by an ophthalmologist as having Excellent-Fair performance in 83% of cases, and performs well even on blurred image

    Structured Near-Optimal Channel-Adapted Quantum Error Correction

    Full text link
    We present a class of numerical algorithms which adapt a quantum error correction scheme to a channel model. Given an encoding and a channel model, it was previously shown that the quantum operation that maximizes the average entanglement fidelity may be calculated by a semidefinite program (SDP), which is a convex optimization. While optimal, this recovery operation is computationally difficult for long codes. Furthermore, the optimal recovery operation has no structure beyond the completely positive trace preserving (CPTP) constraint. We derive methods to generate structured channel-adapted error recovery operations. Specifically, each recovery operation begins with a projective error syndrome measurement. The algorithms to compute the structured recovery operations are more scalable than the SDP and yield recovery operations with an intuitive physical form. Using Lagrange duality, we derive performance bounds to certify near-optimality.Comment: 18 pages, 13 figures Update: typos corrected in Appendi

    Evaporation of particle-stabilised emulsion sunscreen films

    Get PDF
    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here

    Spectrophotometry of thin films of light absorbing particles

    Get PDF
    Thin films of dispersions of light absorbing solid particles or emulsions containing a light absorbing solute all have a non-uniform distribution of light absorbing species throughout the sample volume. This results in non-uniform light absorption over the illuminated area which causes the optical absorbance, as measured using a conventional specular UV-vis spectrophotometer, to deviate from the Beer-Lambert relationship. We have developed a theoretical model to account for the absorbance properties of such films which are shown to depend on the size and volume fraction of the light absorbing particles plus other sample variables. We have compared model predictions with measured spectra for samples consisting of emulsions containing a dissolved light absorbing solute. Using no adjustable parameters, the model successfully predicts the behaviour of non-uniform, light absorbing emulsion films with varying values of droplet size, volume fraction and other parameters

    Optimum Quantum Error Recovery using Semidefinite Programming

    Get PDF
    Quantum error correction (QEC) is an essential element of physical quantum information processing systems. Most QEC efforts focus on extending classical error correction schemes to the quantum regime. The input to a noisy system is embedded in a coded subspace, and error recovery is performed via an operation designed to perfectly correct for a set of errors, presumably a large subset of the physical noise process. In this paper, we examine the choice of recovery operation. Rather than seeking perfect correction on a subset of errors, we seek a recovery operation to maximize the entanglement fidelity for a given input state and noise model. In this way, the recovery operation is optimum for the given encoding and noise process. This optimization is shown to be calculable via a semidefinite program (SDP), a well-established form of convex optimization with efficient algorithms for its solution. The error recovery operation may also be interpreted as a combining operation following a quantum spreading channel, thus providing a quantum analogy to the classical diversity combining operation.Comment: 7 pages, 3 figure

    Eocene-Oligocene Latitudinal Climate Gradients in North America Inferred from Stable Isotope Ratios in Perissodactyl Tooth Enamel

    Get PDF
    The Eocene-Oligocene transition (~ 34 Ma) was one of the most pronounced episodes of climate change of the Cenozoic. In order to investigate this episode of global climate cooling in North America, we analyzed the carbon and oxygen stable isotope composition of the carbonate component of 19 perissodactyl (horse and rhino) tooth enamel samples from the Eocene-Oligocene rocks of the Cypress Hills Formation (southwestern Saskatchewan, Canada); we then compared the results with previously published data from the US Great Plains (Nebraska, South Dakota, and Wyoming). Average (± 1σ) perissodactyl enamel δ13C values (vs. V-PDB) in the Eocene (-8.8 ± 0.3‰) and Oligocene (-9.0 ± 0.3‰) are indistinguishable, suggesting no major change in mean annual precipitation in Saskatchewan across the transition. The δ13C values in Saskatchewan indicate the presence of arid ecosystems and are slightly higher than those in the US Great Plains, suggesting drier conditions at higher latitudes. With respect to oxygen isotopes, average (± 1σ) perissodactyl enamel δ18O values (vs. V-SMOW) in the Eocene (19.8 ± 2.0‰) and Oligocene (20.1 ± 3.6‰) are also indistinguishable, suggesting no change in the δ18O of meteoric precipitation across the transition in Saskatchewan. Enamel δ18O variability is much larger in the Oligocene vs. Eocene, indicating a large increase in temperature seasonality. This increase in enamel δ18O variability is much larger than that recorded in the US Great Plains, suggesting that higher latitudes are more sensitive to major episodes of climate change with respect to temperature seasonality. Finally, our data indicate no major change in the Oligocene vs. Eocene latitudinal gradient in local water δ18O in North America, which suggests no change in mean annual temperature gradients across the transition. This result supports the hypothesis that ascribes the climate change of the transition with a drop in atmospheric pCO2 because climate models show that this mechanism produces uniform cooling at mid-latitudes

    A Patient-Centered Description of Severe Asthma:Patient Understanding Leading to Assessment for a Severe Asthma Referral (PULSAR)

    Get PDF
    BACKGROUND: Although severe asthma can be life-threatening, many patients are unaware they have this condition. OBJECTIVES: Patient Understanding Leading to Assessment for a Severe Asthma Referral (PULSAR) is a novel, multidisciplinary working group aiming to develop and disseminate a global, patient-centered description of severe asthma to improve patient understanding of severe asthma and effect a change in patient behavior whereby patients are encouraged to visit their healthcare professional, when appropriate. METHODS: Current definitions from patient organization websites, asthma guidelines, and medication information for key asthma drugs were assessed and informed a multidisciplinary working group, convened to identify common concepts and terminology used to define severe asthma. A patient-centered description of severe asthma and patient checklist were drafted based on working-group discussions and reviewed by an external behavioral scientist for patient understanding and relevance. These were tested using an online US/Canadian survey. RESULTS: The patient-centered description of severe asthma and patient checklist were reviewed and re-drafted by the authors. The text was simplified following the behavioral-scientist review. The survey (n = 153) included 105 patients with severe asthma. Of those with severe asthma, 92.2% of patients reported that the description was consistent with their experiences of severe asthma and 92.6% of patients reported that the PULSAR initiative would encourage them to visit their healthcare provider. CONCLUSION: A patient-centered description of severe asthma has been developed and tested using patients with severe asthma; this description will allow patients to assess whether they might have severe asthma and prompt them to visit their healthcare provider, if appropriate

    First Spectral Analysis of a Solar Plasma Eruption Using ALMA

    Get PDF
    The aim of this study is to demonstrate how the logarithmic millimeter continuum gradient observed using the Atacama Large Millimeter/submillimeter Array (ALMA) may be used to estimate optical thickness in the solar atmosphere. We discuss how using multi-wavelength millimeter measurements can refine plasma analysis through knowledge of the absorption mechanisms. Here we use sub-band observations from the publicly available science verification (SV) data, whilst our methodology will also be applicable to regular ALMA data. The spectral resolving capacity of ALMA SV data is tested using the enhancement coincident with an X-ray Bright Point (XBP) and from a plasmoid ejection event near active region NOAA12470 observed in Band 3 (84-116 GHz) on 17/12/2015. We compute the interferometric brightness temperature light-curve for both features at each of the four constituent sub-bands to find the logarithmic millimetre spectrum. We compared the observed logarithmic spectral gradient with the derived relationship with optical thickness for an isothermal plasma to estimate the structure's optical thicknesses. We conclude, within 90% confidence, that the stationary enhancement has an optical thickness between 0.02τ2.780.02 \leq \tau \leq 2.78, and that the moving enhancement has 0.11τ2.780.11 \leq \tau \leq 2.78, thus both lie near to the transition between optically thin and thick plasma at 100 GHz. From these estimates, isothermal plasmas with typical Band 3 background brightness temperatures would be expected to have electron temperatures of 737015300\sim 7370 - 15300 K for the stationary enhancement and between 74409560\sim 7440 - 9560 K for the moving enhancement, thus demonstrating the benefit of sub-band ALMA spectral analysis.Comment: To appear in Ap
    corecore