74 research outputs found

    A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

    Get PDF
    This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds

    The band structure of BeTe - a combined experimental and theoretical study

    Full text link
    Using angle-resolved synchrotron-radiation photoemission spectroscopy we have determined the dispersion of the valence bands of BeTe(100) along ΓX\Gamma X, i.e. the [100] direction. The measurements are analyzed with the aid of a first-principles calculation of the BeTe bulk band structure as well as of the photoemission peaks as given by the momentum conserving bulk transitions. Taking the calculated unoccupied bands as final states of the photoemission process, we obtain an excellent agreement between experimental and calculated spectra and a clear interpretation of almost all measured bands. In contrast, the free electron approximation for the final states fails to describe the BeTe bulk band structure along ΓX\Gamma X properly.Comment: 21 pages plus 4 figure

    Effect of Semicore Orbitals on the Electronic Band Gaps of Si, Ge, and GaAs within the GW Approximation

    Full text link
    We study the effect of semicore states on the self-energy corrections and electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are computed within the GW approach, and electronic states are expanded in a plane-wave basis. For these materials, we generate {\it ab initio} pseudopotentials treating as valence states the outermost two shells of atomic orbitals, rather than only the outermost valence shell as in traditional pseudopotential calculations. The resulting direct and indirect energy gaps are compared with experimental measurements and with previous calculations based on pseudopotential and ``all-electron'' approaches. Our results show that, contrary to recent claims, self-energy effects due to semicore states on the band gaps can be well accounted for in the standard valence-only pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode

    Get PDF
    This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%

    Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon

    Full text link
    Motivated by the negative thermal expansion observed for silicon between 20 K and 120 K, we present first an ab initio study of the volume dependence of interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and of the associated mode Gruneisen parameters. The influence of successive nearest neighbors shells is analysed. Analytical formulas, taking into account interactions up to second nearest neighbors, are developped for phonon frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen parameters. We also analyze the volume and pressure dependence of various thermodynamic properties (specific heat, bulk modulus, thermal expansion), and point out the effect of the negative mode Gruneisen parameters of the acoustic branches on these properties. Finally, we present the evolution of the mean square atomic displacement and of the atomic temperature factor with the temperature for different volumes, for which the anomalous effects are even greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys. Rev.

    Static coupling effect of a two-degree-of-freedom direct drive induction motor

    Get PDF
    Two-degree-of-freedom motors are capable of producing linear, rotary, and helical motion, and thus have widespread applications in special industries. In this study, a new concept- static coupling effect is studied in the two-degree-of-freedom direct-drive induction motor (2DoFDDIM). The proposed approach is based on the image method and the three-dimensional (3D) finite-element method. The image method model is established to analyse its reasons and predict the main effects, which are then verified by the proposed 3D finite-element static coupling model and experiments. The induced voltages and currents are produced in the static part and induced torque or force is obtained, even though the static part is not energised. It is concluded that the static coupling effect increases with the supply frequency and is influenced by the stator winding configuration. Thus, the existence of the static coupling effect is confirmed, which must be taken into account in future optimisation and precise control of the 2DoFDDIM

    Longitudinal changes of SARA scale in Friedreich ataxia: Strong influence of baseline score and age at onset

    Get PDF
    BACKGROUND: The Scale for Assessment and Rating of Ataxia (SARA) is widely used in different types of ataxias and has been chosen as the primary outcome measure in the European natural history study for Friedreich ataxia (FA). METHODS: To assess distribution and longitudinal changes of SARA scores and its single items, we analyzed SARA scores of 502 patients with typical-onset FA (<25 years) participating in the 4-year prospective European FA Consortium for Translational Studies (EFACTS). Pattern of disease progression was determined using linear mixed-effects regression models. The chosen statistical model was re-fitted in order to estimate parameters and predict disease progression. Median time-to-change and rate of score progression were estimated using the Kaplan-Meier method and weighted linear regression models, respectively. RESULTS: SARA score at study enrollment and age at onset were the major predictive factors of total score progression during the 4-year follow-up. To a less extent, age at evaluation also influenced the speed of SARA progression, while disease duration did not improve the prediction of the statistical model. Temporal dynamics of total SARA and items showed a great variability in the speed of score increase during disease progression. Gait item had the highest annual progression rate, with median time for one-point score increase of 1 to 2 years. INTERPRETATION: Analyses of statistical properties of SARA suggest a variable sensitivity of the scale at different disease stages, and provide important information for population selection and result interpretation in future clinical trials

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    Implementation of an all-electron GW approximation based on the PAW method without plasmon pole approximation: application to Si, SiC, AlAs, InAs, NaH and KH

    Full text link
    A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH and KH. To illustrate the novelty of the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.Comment: 11pages,3figures, submitted to PR

    Bi-Factor Approximation Algorithms for Hard Capacitated kk-Median Problems

    No full text
    The kk-Facility Location problem is a generalization of the classical problems kk-Median and Facility Location. The goal is to select a subset of at most kk facilities that minimizes the total cost of opened facilities and established connections between clients and opened facilities. We consider the hard-capacitated version of the problem, where a single facility may only serve a limited number of clients and creating multiple copies of a facility is not allowed. We construct approximation algorithms slightly violating the capacities based on rounding a fractional solution to the standard LP. It is well known that the standard LP (even in the case of uniform capacities and opening costs) has unbounded integrality gap if we only allow violating capacities by a factor smaller than 22, or if we only allow violating the number of facilities by a factor smaller than 22. In this paper, we present the first constant-factor approximation algorithms for the hard-capacitated variants of the problem. For uniform capacities, we obtain a (2+ε)(2+\varepsilon)-capacity violating algorithm with approximation ratio O(1/ε2)O(1/\varepsilon^2); our result has not yet been improved. Then, for non-uniform capacities, we consider the case of kk-Median, which is equivalent to kk-Facility Location with uniform opening cost of the facilities. Here, we obtain a (3+ε)(3+\varepsilon)-capacity violating algorithm with approximation ratio O(1/ε)O(1/\varepsilon)
    corecore