75 research outputs found

    Tianeptine: An Antidepressant with Memory-Protective Properties

    Get PDF
    The development of effective pharmacotherapy for major depression is important because it is such a widespread and debilitating mental disorder. Here, we have reviewed preclinical and clinical studies on tianeptine, an atypical antidepressant which ameliorates the adverse effects of stress on brain and memory. In animal studies, tianeptine has been shown to prevent stress-induced morphological sequelae in the hippocampus and amygdala, as well as to prevent stress from impairing synaptic plasticity in the prefrontal cortex and hippocampus. Tianeptine also has memory-protective characteristics, as it blocks the adverse effects of stress on hippocampus-dependent learning and memory. We have further extended the findings on stress, memory and tianeptine here with two novel observations: 1) stress impairs spatial memory in adrenalectomized (ADX), thereby corticosterone-depleted, rats; and 2) the stress-induced impairment of memory in ADX rats is blocked by tianeptine. These findings are consistent with previous research which indicates that tianeptine produces anti-stress and memory-protective properties without altering the response of the hypothalamic-pituitary-adrenal axis to stress. We conclude with a discussion of findings which indicate that tianeptine accomplishes its anti-stress effects by normalizing stress-induced increases in glutamate in the hippocampus and amygdala. This finding is potentially relevant to recent research which indicates that abnormalities in glutamatergic neurotransmission are involved in the pathogenesis of depression. Ultimately, tianeptine’s prevention of depression-induced sequelae in the brain is likely to be a primary factor in its effectiveness as a pharmacological treatment for depression

    Watchful Waiting After Radiological Guided Drainage of Intra-abdominal Abscess in Patients With Crohn's Disease Might Be Associated With Increased Rates of Stoma Construction

    Get PDF
    Background: Management of spontaneous intra-abdominal abscess (IAA) in patients with Crohn's disease (CD) with radiologically guided percutaneous drainage (PD) was debated. Methods: This is a secondary analysis from a multicenter, retrospective cohort study of all the patients with CD who underwent PD followed by surgery at 19 international tertiary centers. Results: Seventeen patients (4.8%) who did not undergo surgery after PD were compared to those who had PD followed by surgical intervention 335/352 (95.2%). Patients who had PD without surgery were those with longer disease duration, more frequently had previous surgery for CD (laparotomies/laparoscopies), enteric fistula, on steroid treatment before and continue to have it after PD. Patients who had PD without subsequent surgical resection had a higher risk of stoma construction at later stages 8/17 (47.1%) versus 90/326 (27.6%) (P < .01). Patients with PD with no subsequent surgery had numerically higher rates of abscess recurrence 5/17 (29.4%) compared to those who had PD followed by surgery 45/335 (13.4%) the difference was not statistically significant (P = .07). Conclusions: Even with the low number of patients enrolled in this study who had PD of IAA without subsequent surgery, the findings indicate a markedly worse prognosis in terms of recurrence, length of stay, readmission, and stoma construction. Watchful waiting after PD to treat patients with spontaneous IAA might be indicated in selected patients with poor health status or poor prognostic factors

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Psychosocial Animal Model of PTSD Produces a Long-Lasting Traumatic Memory, an Increase in General Anxiety and PTSD-Like Glucocorticoid Abnormalities

    No full text
    Post-traumatic stress disorder (PTSD) is characterized by a pathologically intense memory for a traumatic experience, persistent anxiety and physiological abnormalities, such as low baseline glucocorticoid levels and increased sensitivity to dexamethasone. We have addressed the hypothesis that rats subjected to chronic psychosocial stress would exhibit PTSD-like sequelae, including traumatic memory expression, increased anxiety and abnormal glucocorticoid responses. Adult male Sprague-Dawley rats were exposed to a cat on two occasions separated by 10 days, in conjunction with chronic social instability. Three weeks after the second cat exposure, the rats were tested for glucocorticoid abnormalities, general anxiety and their fear-conditioned memory of the two cat exposures. Stressed rats exhibited reduced basal glucocorticoid levels, increased glucocorticoid suppression following dexamethasone administration, heightened anxiety and a robust fear memory in response to cues that were paired with the two cat exposures. The commonalities in endocrine and behavioral measures between psychosocially stressed rats and traumatized people with PTSD provide the opportunity to explore mechanisms underlying psychological trauma-induced changes in neuroendocrine systems and cognition

    Differential Effectiveness of Tianeptine, Clonidine and Amitriptyline in Blocking Traumatic Memory Expression, Anxiety and Hypertension in an Animal Model of PTSD

    No full text
    Individuals exposed to life-threatening trauma are at risk for developing post-traumatic stress disorder (PTSD), a debilitating condition that involves persistent anxiety, intrusive memories and several physiological disturbances. Current pharmacotherapies for PTSD manage only a subset of these symptoms and typically have adverse side effects which limit their overall effectiveness. We evaluated the effectiveness of three different pharmacological agents to ameliorate a broad range of PTSD-like symptoms in our established predator-based animal model of PTSD. Adult male Sprague–Dawley rats were given 1-h cat exposures on two occasions that were separated by 10 days, in conjunction with chronic social instability. Beginning 24 h after the first cat exposure, rats received daily injections of amitriptyline, clonidine, tianeptine or vehicle. Three weeks after the second cat exposure, all rats underwent a battery of behavioral and physiological tests. The vehicle-treated, psychosocially stressed rats demonstrated a robust fear memory for the two cat exposures, as well as increased anxiety expressed on the elevated plus maze, an exaggerated startle response, elevated heart rate and blood pressure, reduced growth rate and increased adrenal gland weight, relative to the vehicle-treated, non-stressed (control) rats. Neither amitriptyline nor clonidine was effective at blocking the entire cluster of stress-induced sequelae, and each agent produced adverse side effects in control subjects. Only the antidepressant tianeptine completely blocked the effects of psychosocial stress on all of the physiological and behavioral measures that were examined. These findings illustrate the differential effectiveness of these three treatments to block components of PTSD-like symptoms in rats, and in particular, reveal the profile of tianeptine as the most effective of all three agents

    Animal model of PTSD based on clinically relevant features of trauma susceptibility and expression

    No full text
    Rationale/statement of the problem : There is an insufficient understanding of the neurobiology of post-traumatic stress disorder (PTSD). Therefore, the development of an animal model of PTSD that takes into account clinical features of the disorder is of value toward enhancing our understanding of the mechanisms, and in the development of novel treatments, of emotional trauma. Methods : Adult male rats were administered chronic psychosocial stress composed of two 1-hour periods of inescapable exposure to a cat, in conjunction with daily unstable pair housing, over a 31 day period. The rats were then given a battery of tests, including measures of behavior (anxiety testing, startle response), cognition (predator-based fear memory and new memory testing), hormone levels (basal and evoked glucocorticoids), responses to pharmacological agents (dexamethasone and yohimbine) and cardiovascular activity (blood pressure/heart rate). In addition, we measured epigenetic alterations (methylation) of the brain-derived neurotrophic factor (BDNF) gene. Results : Psychosocially stressed rats exhibited a PTSD-like phenotype. The stressed rats exhibited a strong fear-conditioned memory of the two cat exposures, an increase in behavioral signs of anxiety, an exaggerated startle response, increased blood pressure, greater sensitivity to yohimbine and a hippocampus-dependent memory impairment, relative to controls. In addition, stressed rats exhibited reduced basal glucocorticoid levels, greater sensitivity to dexamethasone and hypermethylation of the BDNF gene in the hippocampus. Conclusion : These findings demonstrate that intense psychosocial stress produced dramatic changes in physiology and behavior in rats which are comparable to those observed in people diagnosed with PTSD. This rat model, therefore, may enhance our understanding of the mechanisms underlying human trauma and in the development of more effective pharmacotherapy for people with PTSD

    Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats

    No full text
    We have studied the effects of an acute predator stress experience on spatial learning and memory in adult male and female Sprague-Dawley rats. All rats were trained to learn the location of a hidden escape platform in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. In the control (non-stress) condition, female rats were superior to the males in the accuracy and consistency of their spatial memory performance tested over multiple days of training. In the stress condition, rats were exposed to the cat for 30 min immediately before or after learning, or before the 24-h memory test. Predator stress dramatically increased corticosterone levels in males and females, with females exhibiting greater baseline and stress-evoked responses than males. Despite these sex differences in the overall magnitudes of corticosterone levels, there were significant sex-independent correlations involving basal and stress-evoked corticosterone levels, and memory performance. Most importantly, predator stress impaired short-term memory, as well as processes involved in memory consolidation and retrieval, in male and female rats. Overall, we have found that an intense, ethologically relevant stressor produced a largely equivalent impairment of memory in male and female rats, and sex-independent corticosterone-memory correlations. These findings may provide insight into commonalities in how traumatic stress affects the brain and memory in men and women
    corecore