18,935 research outputs found
Cryogenic fluid flow instabilities in heat exchangers
Analytical and experimental investigation determines the nature of oscillations and instabilities that occur in the flow of two-phase cryogenic fluids at both subcritical and supercritical pressures in heat exchangers. Test results with varying system parameters suggest certain design approaches with regard to heat exchanger geometry
Informational Complexity and the Flow of Knowledge across social boundaries
Scholars from a variety of backgrounds – economists, sociologists, strategists, and students of technology management – have sought a better understanding of why some knowledge disperses widely while other knowledge does not. In this quest, some researchers have focused on the characteristics of the knowledge itself (e.g., Polanyi, 1966; Reed and DeFillippi, 1990; Zander and Kogut, 1995) while others have emphasized the social networks that constrain and enable the flow of knowledge (e.g., Coleman et al., 1957; Davis and Greve, 1997). This chapter examines the interplay between these two factors. Specifically, we consider how the complexity of knowledge and the density of social relations jointly influence the movement of knowledge. Imagine a social network composed of patches of dense connections with sparse interstices between them. The dense patches might reflect firms, for instance, or geographic regions or technical communities. When does knowledge diffuse within these dense patches circumscribed by social boundaries but not beyond them? Synthesizing social network theory with a view of knowledge transfer as a search process, we argue that knowledge inequality across social boundaries should reach its peak when the underlying knowledge is of moderate complexity. To test this hypothesis, we analyze patent data and compare citation rates across three types of social boundaries: within versus outside the firm, geographically near to versus far from the inventor, and internal versus external to the technological class. In all three cases, the disparity in knowledge diffusion across these borders is greatest for knowledge of an intermediate level of complexity.evolutionary economics, informational complexity, knowledge flow, social boundaries
Shallow grooves in journal improve air bearing performance
Bearing designs, which shape the surface to create artificial fluid-film wedges in the absence of any applied radial load, generate radial restoring forces to keep journals from whirling. Helical- or herringbone-grooved journals or rotors show most promise of stable operation, with no sacrifice in load capacity
Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. II. A Short-period Companion Orbiting an F Star with Evidence of a Stellar Tertiary and Significant Mutual Inclination
We report the discovery via radial velocity (RV) measurements of a short-period (P = 2.430420 ± 0.000006 days) companion to the F-type main-sequence star TYC 2930-00872-1. A long-term trend in the RV data also suggests the presence of a tertiary stellar companion with P > 2000 days. High-resolution spectroscopy of the host star yields T_(eff) = 6427 ± 33 K, log g = 4.52 ± 0.14, and [Fe/H] = –0.04 ± 0.05. These parameters, combined with the broadband spectral energy distribution (SED) and a parallax, allow us to infer a mass and radius of the host star of M_1 = 1.21 ± 0.08 M_☉ and R_1 = 1.09^(+0.15)_(–0.13) R_☉. The minimum mass of the inner companion is below the hydrogen-burning limit; however, the true mass is likely to be substantially higher. We are able to exclude transits of the inner companion with high confidence. Further, the host star spectrum exhibits a clear signature of Ca H and K core emission, indicating stellar activity, but a lack of photometric variability and small v sin I suggest that the primary's spin axis is oriented in a pole-on configuration. The rotational period of the primary estimated through an activity-rotation relation matches the orbital period of the inner companion to within 1.5 σ, suggesting that the primary and inner companion are tidally locked. If the inner companion's orbital angular momentum vector is aligned with the stellar spin axis as expected through tidal evolution, then it has a stellar mass of ~0.3-0.4 M_☉. Direct imaging limits the existence of stellar companions to projected separations <30 AU. No set of spectral lines and no significant flux contribution to the SED from either companion are detected, which places individual upper mass limits of M_([2,3]) ≾ 1.0 M_☉, provided they are not stellar remnants. If the tertiary is not a stellar remnant, then it likely has a mass of ~0.5-0.6 M_☉, and its orbit is likely significantly inclined from that of the secondary, suggesting that the Kozai-Lidov mechanism may have driven the dynamical evolution of this system
Factorization Approach for Top Mass Reconstruction at High Energies
Using effective theories for jets and heavy quarks it is possible to prove
that the double differential top-antitop invariant mass distribution for the
process  in the resonance region for c.m. energies  much
larger than the top mass can factorized into perturbatively computable hard
coefficients and jet functions and a non-perturbative soft function. For
invariant mass prescriptions based on hemispheres defined with respect to the
thrust axis the soft function can be extracted from massless jet event shape
distributions. This approach allows in principle for top mass determinations
without uncertainties from hadronization using the reconstruction method and to
quantify the top mass scheme dependence of the measured top quark mass value.Comment: Talk given at 2007 International Linear Collider Workshop (LCWS07 and
  ILC07), Hamburg, Germany, 30 May - 3 Jun 2007, 7 pages, 4 figures, title
  modifie
Quo Vadis?
Commencement address given by Robin W. Fleming, President of the University of Michigan, to the Autumn 1976 graduating class of The Ohio State University, St. John Arena, Columbus, Ohio, December 9, 1976
Experimental dynamic stiffness and damping of externally pressurized gas-lubricated journal bearings
A rigid vertical shaft was operated with known amounts of unbalance at speeds to 30,000 rpm and gas supply pressure ratios to 4.8. From measured amplitude and phase angle data, dynamic stiffness and damping coefficients of the bearings were determined. The measured stiffness was proportional to the supply pressure, while damping was little affected by supply pressure. Damping dropped rapidly as the fractional frequency whirl threshold was approached. A small-eccentricity analysis overpredicted the stiffness by 20 to 70 percent. Predicted damping was lower than measured at low speeds but higher at high speeds
Optimal hedging of Derivatives with transaction costs
We investigate the optimal strategy over a finite time horizon for a
portfolio of stock and bond and a derivative in an multiplicative Markovian
market model with transaction costs (friction). The optimization problem is
solved by a Hamilton-Bellman-Jacobi equation, which by the verification theorem
has well-behaved solutions if certain conditions on a potential are satisfied.
In the case at hand, these conditions simply imply arbitrage-free
("Black-Scholes") pricing of the derivative. While pricing is hence not changed
by friction allow a portfolio to fluctuate around a delta hedge. In the limit
of weak friction, we determine the optimal control to essentially be of two
parts: a strong control, which tries to bring the stock-and-derivative
portfolio towards a Black-Scholes delta hedge; and a weak control, which moves
the portfolio by adding or subtracting a Black-Scholes hedge. For simplicity we
assume growth-optimal investment criteria and quadratic friction.Comment: Revised version, expanded introduction and references 17 pages,
  submitted to International Journal of Theoretical and Applied Finance (IJTAF
- …
