12,657 research outputs found

    Identification and characterization of extraterrestrial non-chondritic interplanetary dust

    Get PDF
    Interplanetary dust particles (IDPs) are among the most pristine and primitive extraterrestrial materials available for direct study. Most of the stratospheric particles selected for study from the JSC Curatorial Collection were chondritic in composition (major element abundances within a factor of two of chondritic meteorites) because this composition virtually ensures that the particle is from an extraterrestrial source. It is likely that some of the most interesting classes of IDP's have not been recognized simply because they are not chondritic or do not fit established criteria for extraterrestrial origin. Indeed, mass spectroscopy data from the Giotto Flyby of comet Halley indicate that a substantial fraction of the dust is in the submicron size range and that a majority of these particles contain C, H, O, and/or N as major elements. The preponderance of CHON particles in the coma of Halley implies that similar particles may exist in the JSC stratospheric dust collection. However, the JSC collection also contains a variety of stratospheric contaminants from terrestrial sources which have these same characteristics. Because established criteria for extraterrestrial origin may not apply to such particles in individual cases, and integrated approach is required in which a variety of analysis techniques are applied to the same particle. Non-chondritic IDP's, like their chondritic counterparts, can be used to elucidate pre- and early solar system processes and conditions. The study of non-chondritic IDP's may additionally yield unique information which bears on the nature of cometary bodies and the processing of carbonaceous and other low atomic number materials. A suite of complementary techniques, including Low Voltage Scanning Electron Microscopy (LVSEM), Energy-Dispersive X-ray Microanalysis (EDX), Secondary Ion Mass Spectrometry (SIMS) isotope-ratio imaging and Analytical Electron Microscopy (AEM), were utilized to accomplish the following two objectives: (1) to develop criteria for the unequivocal identification of extraterrestrial non-chondritic IDP's; and (2) to infer IDP parent body, solar nebula, and pre-solar conditions through the study of phases, textures, and components contained within non-chondritic IDP's. The general approach taken is designed to maximize the total information obtained from each particle. Techniques will be applied in order from least destructive to most destructive

    Series-hybrid bearing - An approach to extending bearing fatigue life at high speeds

    Get PDF
    Fluid film bearing of hybrid device consists of orifice compensated annular thrust bearing and self-acting journal bearing. In series hybrid bearing, both ball bearing and annular thrust bearing carry full system thrust load, but two bearings share speed. Operation of system is stable and automatically fail-safe

    A QTL for osteoporosis detected in an F2 population derived from White Leghorn chicken lines divergently selected for bone index

    Get PDF
    Osteoporosis, resulting from progressive loss of structural bone during the period of egg-laying in hens, is associated with an increased susceptibility to bone breakage. To study the genetic basis of bone strength, an F cross was produced from lines of hens that had been divergently selected for bone index from a commercial pedigreed White Leghorn population. Quantitative trait loci (QTL) affecting the bone index and component traits of the index (tibiotarsal and humeral strength and keel radiographic density) were mapped using phenotypic data from 372 F individuals in 32 F families. Genotypes for 136 microsatellite markers in 27 linkage groups covering ∼80% of the genome were analysed for association with phenotypes using within-family regression analyses. There was one significant QTL on chromosome 1 for bone index and the component traits of tibiotarsal and humeral breaking strength. Additive effects for tibiotarsal breaking strength represented 34% of the trait standard deviation and 7.6% of the phenotypic variance of the trait. These QTL for bone quality in poultry are directly relevant to commercial populations

    The Organic Research Centre - Elm Farm:Bulletin 87

    Get PDF
    Bulletin 87 with coverage of Avian Influenza H5N1 in Suffolk,commentary on Biofuels, a paper on the organic "transition to sustainable resilience",paper on participatory approach to agronomy trials,update on evolutionary breeding of wheat project,article on formation of new growers alliance in UK

    Non-Markovian Dynamics and Entanglement of Two-level Atoms in a Common Field

    Full text link
    We derive the stochastic equations and consider the non-Markovian dynamics of a system of multiple two-level atoms in a common quantum field. We make only the dipole approximation for the atoms and assume weak atom-field interactions. From these assumptions we use a combination of non-secular open- and closed-system perturbation theory, and we abstain from any additional approximation schemes. These more accurate solutions are necessary to explore several regimes: in particular, near-resonance dynamics and low-temperature behavior. In detuned atomic systems, small variations in the system energy levels engender timescales which, in general, cannot be safely ignored, as would be the case in the rotating-wave approximation (RWA). More problematic are the second-order solutions, which, as has been recently pointed out, cannot be accurately calculated using any second-order perturbative master equation, whether RWA, Born-Markov, Redfield, etc.. This latter problem, which applies to all perturbative open-system master equations, has a profound effect upon calculation of entanglement at low temperatures. We find that even at zero temperature all initial states will undergo finite-time disentanglement (sometimes termed "sudden death"), in contrast to previous work. We also use our solution, without invoking RWA, to characterize the necessary conditions for Dickie subradiance at finite temperature. We find that the subradiant states fall into two categories at finite temperature: one that is temperature independent and one that acquires temperature dependence. With the RWA there is no temperature dependence in any case.Comment: 17 pages, 13 figures, v2 updated references, v3 clarified results and corrected renormalization, v4 further clarified results and new Fig. 8-1

    Relativistic BB84, relativistic errors, and how to correct them

    Full text link
    The Bennett-Brassard cryptographic scheme (BB84) needs two bases, at least one of them linearly polarized. The problem is that linear polarization formulated in terms of helicities is not a relativistically covariant notion: State which is linearly polarized in one reference frame becomes depolarized in another one. We show that a relativistically moving receiver of information should define linear polarization with respect to projection of Pauli-Lubanski's vector in a principal null direction of the Lorentz transformation which defines the motion, and not with respect to the helicity basis. Such qubits do not depolarize.Comment: revtex

    Imaging analysis of LDEF craters

    Get PDF
    Two small craters in Al from the Long Duration Exposure Facility (LDEF) experiment tray A11E00F (no. 74, 119 micron diameter and no. 31, 158 micron diameter) were analyzed using Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), low voltage scanning electron microscopy (LVSEM), and SEM energy dispersive spectroscopy (EDS). High resolution images and sensitive elemental and molecular analysis were obtained with this combined approach. The result of these analyses are presented

    Search for nearby stars among proper motion stars selected by optical-to-infrared photometry. I. Discovery of LHS 2090 at spectroscopic distance of d=6pc

    Get PDF
    We present the discovery of a previously unknown very nearby star - LHS 2090 at a distance of only d=6 pc. In order to find nearby (i.e. d < 25 pc) red dwarfs, we re-identified high proper motion stars (μ>\mu > 0.18 arcsec/yr) from the NLTT catalogue (Luyten \cite{luyten7980}) in optical Digitized Sky Survey data for two different epochs and in the 2MASS data base. Only proper motion stars with large R−KsR-K_s colour index and with relatively bright infrared magnitudes (Ks<10K_s<10) were selected for follow-up spectroscopy. The low-resolution spectrum of LHS 2090 and its large proper motion (0.79 arcsec/yr) classify this star as an M6.5 dwarf. The resulting spectroscopic distance estimate from comparing the infrared JHKsJHK_s magnitudes of LHS 2090 with absolute magnitudes of M6.5 dwarfs is 6.0±1.16.0\pm1.1 pc assuming an uncertainty in absolute magnitude of ±\pm0.4 mag.Comment: 3 pages, 1 figure, accepted for publication in Astronomy and Astrophysics Letter
    • …
    corecore