11,723 research outputs found

    Statistical Properties of Interacting Bose Gases in Quasi-2D Harmonic Traps

    Full text link
    The analytical probability distribution of the quasi-2D (and purely 2D) ideal and interacting Bose gas are investigated by using a canonical ensemble approach. Using the analytical probability distribution of the condensate, the statistical properties such as the mean occupation number and particle number fluctuations of the condensate are calculated. Researches show that there is a continuous crossover of the statistical properties from a quasi-2D to a purely 2D ideal or interacting gases. Different from the case of a 3D Bose gas, the interaction between atoms changes in a deep way the nature of the particle number fluctuations.Comment: RevTex, 10pages, 4 figures, E-mail: [email protected]

    Domain Wall Fermions in Quenched Lattice QCD

    Get PDF
    We study the chiral properties and the validity of perturbation theory for domain wall fermions in quenched lattice QCD at beta=6.0. The explicit chiral symmetry breaking term in the axial Ward-Takahashi identity is found to be very small already at Ns=10, where Ns is the size of the fifth dimension, and its behavior seems consistent with an exponential decay in Ns within the limited range of Ns we explore. From the fact that the critical quark mass, at which the pion mass vanishes as in the case of the ordinary Wilson-type fermion, exists at finite Ns, we point out that this may be a signal of the parity broken phase and investigate the possible existence of such a phase in this model at finite Ns. The rho and pi meson decay constants obtained from the four-dimensional local currents with the one-loop renormalization factor show a good agreement with those obtained from the conserved currents

    Non-Markovian Dynamics and Entanglement of Two-level Atoms in a Common Field

    Full text link
    We derive the stochastic equations and consider the non-Markovian dynamics of a system of multiple two-level atoms in a common quantum field. We make only the dipole approximation for the atoms and assume weak atom-field interactions. From these assumptions we use a combination of non-secular open- and closed-system perturbation theory, and we abstain from any additional approximation schemes. These more accurate solutions are necessary to explore several regimes: in particular, near-resonance dynamics and low-temperature behavior. In detuned atomic systems, small variations in the system energy levels engender timescales which, in general, cannot be safely ignored, as would be the case in the rotating-wave approximation (RWA). More problematic are the second-order solutions, which, as has been recently pointed out, cannot be accurately calculated using any second-order perturbative master equation, whether RWA, Born-Markov, Redfield, etc.. This latter problem, which applies to all perturbative open-system master equations, has a profound effect upon calculation of entanglement at low temperatures. We find that even at zero temperature all initial states will undergo finite-time disentanglement (sometimes termed "sudden death"), in contrast to previous work. We also use our solution, without invoking RWA, to characterize the necessary conditions for Dickie subradiance at finite temperature. We find that the subradiant states fall into two categories at finite temperature: one that is temperature independent and one that acquires temperature dependence. With the RWA there is no temperature dependence in any case.Comment: 17 pages, 13 figures, v2 updated references, v3 clarified results and corrected renormalization, v4 further clarified results and new Fig. 8-1

    Unbalance Response Prediction for Accelerating Rotors With Load-Dependent Nonlinear Bearing Stiffness

    Get PDF
    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. Previous papers have explored the transient effect of suddenly applied imbalance and the steady-state unbalance response, using bearing forces calculated by the rolling-element bearing analysis code COBRA-AHS. The present work considers the acceleration of a rotor through one or more critical speeds. The rotordynamic analysis showed that for rapid acceleration rates the maximum response amplitude may be considerably less than predicted by steady-state analysis. Above the critical speed, transient vibration at the rotor natural frequency occurs, similar to that predicted for a Jeffcott rotor with constant-stiffness bearings. A moderate amount of damping will markedly reduce the vibration amplitude, but this damping is not inherent in ball bearings

    Photoproduction of h_c

    Get PDF
    Using the NRQCD factorization formalism, we calculate the total cross section for the photoproduction of h_c mesons. We include color-octet and color-singlet mechanisms as well as next-to-leading order perturbative QCD corrections. The theoretical prediction depends on two nonperturbative matrix elements that are not well determined from existing data on charmonium production. For reasonable values of these matrix elements, the cross section is large enough that the h_c may be observable at the E831 experiment and at the HERA experiments.Comment: Revtex file 8 pages, 1 figure. Macros needed: epsf,floats,rotate Minor typos changed, and reference added. Version to be published in Phys.Rev.

    Leptoproduction of J/psi

    Full text link
    We study leptoproduction of J/ψJ/\psi at large Q2Q^2 within the nonrelativistic QCD (NRQCD) factorization formalism. The cross section is dominated by color-octet terms that are of order αs\alpha_s. The color-singlet term, which is of order αs2\alpha^2_s, is shown to be a small contribution to the total cross section. We also calculate the tree diagrams for color-octet production at order αs2\alpha^2_s in a region of phase space where there is no leading color-octet contribution. We find that in this regime the color-singlet contribution dominates. We argue that non-perturbative corrections arising from diffractive leptoproduction, higher twist effects, and higher order terms in the NRQCD velocity expansion should be suppressed as Q2Q^2 is increased. Therefore, the color-octet matrix elements and and can be reliably extracted from this process. Finally, we point out that an experimental measurement of the polarization of leptoproduced J/ψJ/\psi will provide an excellent test of the NRQCD factorization formalism.Comment: 33 pages latex. 10 figures. Uses revtex, epsf, and rotate macros. This paper is also available via the UW phenomenology archives at http://phenom.physics.wisc.edu/pub/preprints

    Transient Response of Rotor on Rolling-Element Bearings with Clearance

    Get PDF
    Internal clearance in rolling element bearings is usually present to allow for radial and axial growth of the rotor-bearing system and to accommodate bearing fit-up. The presence of this clearance also introduces a “dead band” into the load-deflection behavior of the bearing. Previous studies demonstrated that the presence of dead band clearance might have a significant effect on synchronous rotor response. In this work, the authors investigate transient response of a rotor supported on rolling element bearings with internal clearance. In addition, the stiffness of the bearings varies nonlinearly with bearing deflection and with speed. Bearing properties were accurately calculated with a state of the art rolling bearing analysis code. The subsequent rotordynamics analysis shows that for rapid acceleration rates the maximum response amplitude may be less than predicted by steady-state analysis. The presence of clearance may shift the critical speed location to lower speed values. The rotor vibration response exhibits subharmonic components which are more prominent with bearing clearance
    • 

    corecore