18,558 research outputs found

    Foraging activity by the southern brown bandicoot (Isoodon obesulus) as a mechanism for soil turnover

    Get PDF
    Mammals that forage for food by biopedturbation can alter the biotic and abiotic characteristics of their habitat, influencing ecosystem structure and function. Bandicoots, bilbies, bettongs and potoroos are the primary digging marsupials in Australia, although most of these species have declined throughout their range. This study used a snapshot approach to estimate the soil turnover capacity of the southern brown bandicoot (Isoodon obesulus, Shaw 1797), a persisting digging Australian marsupial, at Yalgorup National Park, Western Australia. The number of southern brown bandicoots was estimated using mark-recapture techniques. To provide an index of digging activity per animal, we quantified the number of new foraging pits and bandicoot nose pokes across 18 plots within the same area. The amount of soil displaced and physical structure of foraging pits were examined from moulds of 47 fresh foraging pits. We estimated that an individual southern brown bandicoot could create ∼45 foraging pits per day, displacing ∼10.74kg of soil, which extrapolates to ∼3.9 tonnes of soil each year. The digging activities of the southern brown bandicoots are likely to be a critical component of soil ecosystem processe

    Results of the 1977 southern California pismo clam survey

    Get PDF
    A Pismo clam, Tivela stultorum, survey was conducted in January 1977 on selected southern California beaches. Effort and catch information was collected through clammer interviews. Estimates for the two day survey were 1,596 clammers spending 2,506 hours to take 6,139 clams. Comparisons were made between the 1977 survey results and previous surveys. Clams were collected for length and age studies. Compliance to the 4.5-inch (114.3 mm) minimum size limit appeared to be good. (15pp.

    Identification and characterization of extraterrestrial non-chondritic interplanetary dust

    Get PDF
    Interplanetary dust particles (IDPs) are among the most pristine and primitive extraterrestrial materials available for direct study. Most of the stratospheric particles selected for study from the JSC Curatorial Collection were chondritic in composition (major element abundances within a factor of two of chondritic meteorites) because this composition virtually ensures that the particle is from an extraterrestrial source. It is likely that some of the most interesting classes of IDP's have not been recognized simply because they are not chondritic or do not fit established criteria for extraterrestrial origin. Indeed, mass spectroscopy data from the Giotto Flyby of comet Halley indicate that a substantial fraction of the dust is in the submicron size range and that a majority of these particles contain C, H, O, and/or N as major elements. The preponderance of CHON particles in the coma of Halley implies that similar particles may exist in the JSC stratospheric dust collection. However, the JSC collection also contains a variety of stratospheric contaminants from terrestrial sources which have these same characteristics. Because established criteria for extraterrestrial origin may not apply to such particles in individual cases, and integrated approach is required in which a variety of analysis techniques are applied to the same particle. Non-chondritic IDP's, like their chondritic counterparts, can be used to elucidate pre- and early solar system processes and conditions. The study of non-chondritic IDP's may additionally yield unique information which bears on the nature of cometary bodies and the processing of carbonaceous and other low atomic number materials. A suite of complementary techniques, including Low Voltage Scanning Electron Microscopy (LVSEM), Energy-Dispersive X-ray Microanalysis (EDX), Secondary Ion Mass Spectrometry (SIMS) isotope-ratio imaging and Analytical Electron Microscopy (AEM), were utilized to accomplish the following two objectives: (1) to develop criteria for the unequivocal identification of extraterrestrial non-chondritic IDP's; and (2) to infer IDP parent body, solar nebula, and pre-solar conditions through the study of phases, textures, and components contained within non-chondritic IDP's. The general approach taken is designed to maximize the total information obtained from each particle. Techniques will be applied in order from least destructive to most destructive

    Quantum Brownian motion of multipartite systems and their entanglement dynamics

    Full text link
    We solve the model of N quantum Brownian oscillators linearly coupled to an environment of quantum oscillators at finite temperature, with no extra assumptions about the structure of the system-environment coupling. Using a compact phase-space formalism, we give a rather quick and direct derivation of the master equation and its solutions for general spectral functions and arbitrary temperatures. Since our framework is intrinsically nonperturbative, we are able to analyze the entanglement dynamics of two oscillators coupled to a common scalar field in previously unexplored regimes, such as off resonance and strong coupling.Comment: 10 pages, 6 figure
    • …
    corecore