6,555 research outputs found

    The improvement of zinc electrodes for electrochemical cells Quarterly report no. 2, Sep. 4 - Dec. 4, 1965

    Get PDF
    Growth parameters of mossy and crystalline dendrites applied to manufacture and handling of silver-zinc batterie

    Improved alkaline electrochemical cell

    Get PDF
    Addition of lead ions to electrolyte suppresses zinc dendrite formation during charging cycle. A soluble lead salt can be added directly or metallic lead can be incorporated in the zinc electrode and allowed to dissolve into the electrolyte

    Scaling Theory of Heat Transport in Quasi-1D Disordered Harmonic Chains

    Full text link
    We introduce a variant of the Banded Random Matrix ensemble and show, using detailed numerical analysis and theoretical arguments, that the phonon heat current in disordered quasi-one-dimensional lattices obeys a one-parameter scaling law. The resulting beta-function indicates that an anomalous Fourier law is applicable in the diffusive regime, while in the localization regime the heat current decays exponentially with the sample size. Our approach opens a new way to investigate the effects of Anderson localization in heat conduction, based on the powerful ideas of scaling theory.Comment: Supplemental Report on calculation of heat current include

    First Calorimetric Measurement of OI-line in the Electron Capture Spectrum of 163^{163}Ho

    Full text link
    The isotope 163^{163}Ho undergoes an electron capture process with a recommended value for the energy available to the decay, QECQ_{\rm EC}, of about 2.5 keV. According to the present knowledge, this is the lowest QECQ_{\rm EC} value for electron capture processes. Because of that, 163^{163}Ho is the best candidate to perform experiments to investigate the value of the electron neutrino mass based on the analysis of the calorimetrically measured spectrum. We present for the first time the calorimetric measurement of the atomic de-excitation of the 163^{163}Dy daughter atom upon the capture of an electron from the 5s shell in 163^{163}Ho, OI-line. The measured peak energy is 48 eV. This measurement was performed using low temperature metallic magnetic calorimeters with the 163^{163}Ho ion implanted in the absorber. We demonstrate that the calorimetric spectrum of 163^{163}Ho can be measured with high precision and that the parameters describing the spectrum can be learned from the analysis of the data. Finally, we discuss the implications of this result for the Electron Capture 163^{163}Ho experiment, ECHo, aiming to reach sub-eV sensitivity on the electron neutrino mass by a high precision and high statistics calorimetric measurement of the 163^{163}Ho spectrum.Comment: 5 pages, 3 figure

    Nonlinear Dynamics of Composite Fermions in Nanostructures

    Full text link
    We outline a theory describing the quasi-classical dynamics of composite fermions in the fractional quantum Hall regime in the potentials of arbitrary nanostructures. By an appropriate parametrization of time we show that their trajectories are independent of their mass and dispersion. This allows to study the dynamics in terms of an effective Hamiltonian although the actual dispersion is as yet unknown. The applicability of the theory is verified in the case of antidot arrays where it explains details of magnetoresistance measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip

    Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices

    Get PDF
    We investigated the magnetotransport properties of high-mobility InAs/GaSb antidot lattices. In addition to the usual commensurability features at low magnetic field we found a broad maximum of classical origin around 2.5 T. The latter can be ascribed to a class of rosetta type orbits encircling a single antidot. This is shown by both a simple transport calculation based on a classical Kubo formula and an analysis of the Poincare surface of section at different magnetic field values. At low temperatures we observe weak 1/B-periodic oscillations superimposed on the classical maximum.Comment: 4 pages, 4 Postscript figures, REVTeX, submitted to Phys Rev

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E≈13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE≈120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E≈10−3\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements

    The improvement of zinc electrodes for electrochemical cells Quarterly report no. 3, 5 Dec. 1965 - 4 Mar. 1966

    Get PDF
    Dendrite deposits on zinc electrodes of electrochemical cell and substrate effect

    On Approximability of Steiner Tree in â„“p\ell_p-metrics

    Full text link
    In the Continuous Steiner Tree problem (CST), we are given as input a set of points (called terminals) in a metric space and ask for the minimum-cost tree connecting them. Additional points (called Steiner points) from the metric space can be introduced as nodes in the solution. In the Discrete Steiner Tree problem (DST), we are given in addition to the terminals, a set of facilities, and any solution tree connecting the terminals can only contain the Steiner points from this set of facilities. Trevisan [SICOMP'00] showed that CST and DST are APX-hard when the input lies in the ℓ1\ell_1-metric (and Hamming metric). Chleb\'ik and Chleb\'ikov\'a [TCS'08] showed that DST is NP-hard to approximate to factor of 96/95≈1.0196/95\approx 1.01 in the graph metric (and consequently ℓ∞\ell_\infty-metric). Prior to this work, it was unclear if CST and DST are APX-hard in essentially every other popular metric! In this work, we prove that DST is APX-hard in every ℓp\ell_p-metric. We also prove that CST is APX-hard in the ℓ∞\ell_{\infty}-metric. Finally, we relate CST and DST, showing a general reduction from CST to DST in ℓp\ell_p-metrics. As an immediate consequence, this yields a 1.391.39-approximation polynomial time algorithm for CST in ℓp\ell_p-metrics.Comment: Abstract shortened due to arxiv's requirement
    • …
    corecore