5,284 research outputs found

    Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies

    Get PDF
    Several computer subroutines are designed to provide the solution to minimum-dimension sets of discrete-coordinate equations of motion for systems consisting of an arbitrary number of hinge-connected rigid bodies assembled in a tree topology. In particular, these routines may be applied to: (1) the case of completely unrestricted hinge rotations, (2) the totally linearized case (all system rotations are small), and (3) the mixed, or partially linearized, case. The use of the programs in each case is demonstrated using a five-body spacecraft and attitude control system configuration. The ability of the subroutines to accommodate prescribed motions of system bodies is also demonstrated. Complete listings and user instructions are included for these routines (written in FORTRAN V) which are intended as multi- and general-purpose tools in the simulation of spacecraft and other complex electromechanical systems

    Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies with nonrigid appendages

    Get PDF
    Three computer subroutines designed to solve the vector-dyadic differential equations of rotational motion for systems that may be idealized as a collection of hinge-connected rigid bodies assembled in a tree topology, with an optional flexible appendage attached to each body are reported. Deformations of the appendages are mathematically represented by modal coordinates and are assumed small. Within these constraints, the subroutines provide equation solutions for (1) the most general case of unrestricted hinge rotations, with appendage base bodies nominally rotating at a constant speed, (2) the case of unrestricted hinge rotations between rigid bodies, with the restriction that those rigid bodies carrying appendages are nominally nonspinning, and (3) the case of small hinge rotations and nominally nonrotating appendages. Sample problems and their solutions are presented to illustrate the utility of the computer programs

    Controlling Molecular Scattering by Laser-Induced Field-Free Alignment

    Full text link
    We consider deflection of polarizable molecules by inhomogeneous optical fields, and analyze the role of molecular orientation and rotation in the scattering process. It is shown that molecular rotation induces spectacular rainbow-like features in the distribution of the scattering angle. Moreover, by preshaping molecular angular distribution with the help of short and strong femtosecond laser pulses, one may efficiently control the scattering process, manipulate the average deflection angle and its distribution, and reduce substantially the angular dispersion of the deflected molecules. We provide quantum and classical treatment of the deflection process. The effects of strong deflecting field on the scattering of rotating molecules are considered by the means of the adiabatic invariants formalism. This new control scheme opens new ways for many applications involving molecular focusing, guiding and trapping by optical and static fields

    Pure phase-encoded MRI and classification of solids

    Get PDF
    Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids

    Pacific Hake, Merluccius productus, Autecology: A Timely Review

    Get PDF
    Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem (CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested

    Jet-like tunneling from a trapped vortex

    Full text link
    We analyze the tunneling of vortex states from elliptically shaped traps. Using the hydrodynamic representation of the Gross-Pitaevskii (Nonlinear Schr\"odinger) equation, we derive analytically and demonstrate numerically a novel type of quantum fluid flow: a jet-like singularity formed by the interaction between the vortex and the nonhomogenous field. For strongly elongated traps, the ellipticity overwhelms the circular rotation, resulting in the ejection of field in narrow, well-defined directions. These jets can also be understood as a formation of caustics since they correspond to a convergence of trajectories starting from the top of the potential barrier and meeting at a certain point on the exit line. They will appear in any coherent wave system with angular momentum and non-circular symmetry, such as superfluids, Bose-Einstein condensates, and light.Comment: 4 pages, 4 figure

    New treatments: Costs, benefits and decision-making procedures

    Get PDF
    One hallmark of modern medicine is the ever-rising cost of providing life-saving or life-extending treatments. Advances in medical care and the ability to improve the duration and quality of life, combined with the expectations of both doctors and patients that all new modalities of treatment developed will be implemented in everyday practice, are the major reasons for modern medicine’s becoming so expensive. In these circumstances resource allocation decisions need to be made and appropriate priority-setting processes developed. This challenge faces all societies but most agonisingly middle income countries like South Africa where the expectations of physicians and patients are geared to the best that can be achieved in any country — even the wealthiest. Expensive, new or established standard treatments that may benefit patients may be considered in at least two categories. The first is when each individual patient will be a direct beneficiary. This applies, for example, when a pacemaker or orthopaedic prosthesis is installed, when an organ such as a kidney, heart or liver is transplanted, or when chronic renal dialysis is initiated. While such treatments have some mortality and a measure of sub-optimal results, good outcomes are the rul

    The global energy landscape and materials innovation

    Get PDF
    Availability of affordable energy has enabled spectacular growth of industrialization and human development in all parts of the world. With growth now accelerating in developing countries, demands on energy sources and infrastructure are being stretched to new limits. Additional energy issues include the push for renewable resources with reduced greenhouse gas emissions and energy security affected by the uneven distribution of energy resources around the globe. Together, these issues present a field of opportunity for innovations to address energy challenges throughout the world and all along the energy flow. These energy challenges form the backdrop for this special expanded issue of MRS Bulletin on Harnessing Materials for Energy. This article introduces the global landscape of materials issues associated with energy. It examines the complex web of energy availability, production, storage, transmission, distribution, use, and efficiency. It focuses on the materials challenges that lie at the core of these areas and discusses how revolutionary concepts can address them. Cross-cutting topics are introduced and interrelationships between topics explored. Article topics are set in the context of the grand energy challenges that face the world into the middle of this century

    Correlation of ERTS multispectral imagery with suspended matter and chlorophyll in lower Chesapeake Bay

    Get PDF
    The feasibility of using multispectral satellite imagery to monitor the characteristics of estuarine waters is being investigated. Preliminary comparisons of MSS imagery with suspended matter concentrations, particle counts, chlorophyll, transmittance and bathymetry have been made. Some visual correlation of radiance with particulates and chlorophyll has been established. Effects of bathymetry are present, and their relation to transmittance and radiance is being investigated. Greatest detail in suspended matter is revealed by MSS band 5. Near-surface suspended sediment load and chlorophyll can be observed in bands 6 and 7. Images received to date have partially defined extent and location of high suspensate concentrations. Net quantity of suspended matter in the lower Bay has been decreasing since the inception of the study, and represents the diminution of turbid flood waters carried into the Bay in late September, 1972. The results so far point to the utility of MSS imagery in monitoring estuarine water character for the assessment of siltation, productivity, and water types
    corecore