71 research outputs found

    The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    Get PDF
    PURPOSE: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. METHODS: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. RESULTS: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. CONCLUSIONS: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and dosimetric errors, and resultant improved clinical outcomes, in cancer radiotherapy

    Local linear density estimation for filtered survival data, with bias correction

    Get PDF
    A class of local linear kernel density estimators based on weighted least-squares kernel estimation is considered within the framework of Aalen's multiplicative intensity model. This model includes the filtered data model that, in turn, allows for truncation and/or censoring in addition to accommodating unusual patterns of exposure as well as occurrence. It is shown that the local linear estimators corresponding to all different weightings have the same pointwise asymptotic properties. However, the weighting previously used in the literature in the i.i.d. case is seen to be far from optimal when it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a 'pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias-correction methods within our framework. The multiplicative bias-correction method proves to be the best in a simulation study comparing the performance of the considered estimators. An example concerning old-age mortality demonstrates the importance of the improvements provided

    Short-term stability in refractive status despite large fluctuations in glucose levels in diabetes mellitus type 1 and 2

    Get PDF
    Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients
    corecore