15 research outputs found

    Identification of Chlamydia trachomatis Antigens Recognized by T Cells From Highly Exposed Women Who Limit or Resist Genital Tract Infection

    Get PDF
    Background. Natural infection induces partial immunity to Chlamydia trachomatis. Identification of chlamydial antigens that induce interferon γ (IFN-) secretion by T cells from immune women could advance vaccine development

    Therapeutic Vaccine for Genital Herpes Simplex Virus-2 Infection: Findings from a Randomized Trial

    Get PDF
    Background. Genital herpes simplex virus type 2 (HSV-2) infection causes recurrent lesions and frequent viral shedding. GEN-003 is a candidate therapeutic vaccine containing HSV-2 gD2∆TMR and ICP4.2, and Matrix-M2 adjuvant. Methods. Persons with genital herpes were randomized into 3 dose cohorts to receive 3 intramuscular doses 21 days apart of 10 µg, 30 µg, or 100 µg of GEN-003, antigens without adjuvant, or placebo. Participants obtained genital swab specimens twice daily for HSV-2 detection and monitored genital lesions for 28-day periods at baseline and at intervals after the last dose. Results. One hundred and thirty-four persons received all 3 doses. Reactogenicity was associated with adjuvant but not with antigen dose or dose number. No serious adverse events were attributed to GEN-003. Compared with baseline, genital HSV-2 shedding rates immediately after dosing were reduced with GEN-003 (from 13.4% to 6.4% for 30 μg [P < .001] and from 15.0% to 10.3% for 100 µg [P < .001]). Lesion rates were also significantly (P < .01) reduced immediately following immunization with 30 µg or 100 µg of GEN-003. GEN-003 elicited increases in antigen binding, virus neutralizing antibody, and T-cell responses. Conclusions. GEN-003 had an acceptable safety profile and stimulated humoral and cellular immune responses. GEN-003 at doses of 30 µg and 100 µg reduced genital HSV shedding and lesion rates

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Antibody recognition is associated with stronger diversifying selection.

    No full text
    <p>(A) Box plot to compare the average non-synonymous substitution rate (dN) of non-antigens, the Antibody antigens and CD4<sup>+</sup> T<sub>H</sub>17 antigens. * p<0.05, Mann-Whitney test, compared with non-antigens (B) The fraction of genes that show evidence of being under diversifying selection in non-antigens, Antibody antigens and CD4<sup>+</sup> T<sub>H</sub>17 antigens. (C) The fraction of codons with dN/dS>1 in non-antigen, the T<sub>H</sub>17 antigens, and the epitope and the non-epitope regions of the Antibody antigens. (D) Output of a generalized-estimating-equation (GEE) analysis for the effect of antibody-recognition (Antibody Antigen) and CD4<sup>+</sup> T<sub>H</sub>17 cell- recognition (T<sub>H</sub>17 Antigen) on the probability that a gene shows signs of being under diversifying selection.</p

    Detection of diversifying selection in pneumococcus.

    No full text
    <p>(A) Schematic of the workflow showing the procedures and software used to detect of diversifying selection in pneumococcus. (B) The distribution of nucleotide diversity (π) among pneumococcal genes. (C) A summary of number of genes and codon sites that show sign of being under positive selection.</p

    The benefit of antigenic variation in CD4+ T<sub>H</sub>17 epitope is limited.

    No full text
    <p>BALB/c mice were immunized by either CT alone (CT) or CT and ovalbumin (CT+OVA). All mice were challenged with a 1∶1 mixture of the antigen-negative (AVO) strain and the antigen-positive (OVA) strain. The density of intranasal colonization by pneumococcus in each mouse was determined on days 1, 4, and 8 after challenge as described in the Methods. Total CFU counts are shown in (A). The ratio between the two strains in each mouse was determined (B). The p values were derived from Mann-Whitney tests comparing the immunized with the control group on days 1, 4, and 8. Solid lines indicate group medians. The correlation between total CFU and the AVO/OVA ratio is shown for the immunized mice (C) and the control mice (D) that remained colonized on days 4 (triangle) and 8 (diamond).</p

    Analysis of competitive advantage for the antigen-negative strain.

    No full text
    a<p>Two-sided Mann-Whitney test of equal median log<sub>10</sub> (AVO/OVA).</p>b<p>Nonparametric confidence interval for median of the difference in log<sub>10</sub>(AVO/OVA).</p
    corecore