7 research outputs found
Deterministic and stochastic aspects of current-induced magnetization reversal in perpendicular nanomagnets
We study the incubation and transition times that characterize the
magnetization switching induced by spin-orbit torques in nanomagnets with
perpendicular anisotropy. We present a phenomenological model to interpret the
dependence of the incubation time on the amplitude of the voltage pulse and
assisting magnetic field and estimate the volume of the seed domain that
triggers the switching. Our measurements evidence a correlation between the
incubation and transition times that is mediated by the temperature variation
during the electric pulse. In addition, we discuss the stochastic distributions
of the two times in terms of the energy barriers opposing the nucleation and
expansion of the seed domain. We propose two models based on the log-normal and
gamma functions to account for the different origin of the variability of the
incubation and transition times, which are associated with a single nucleation
barrier and multiple pinning sites, respectively
A scalable galvanic approach to microswimmer synthesis
Microswimmers are small particles capable of converting available energy sources into propulsion owing to their compositional asymmetry and are promising for applications ranging from targeted delivery to enhanced mixing at the microscale. However, current fabrication techniques demonstrate limited scalability and/or rely on the excessive use of expensive precursor materials. Here, a scalable Pickering-wax emulsion technique is combined with galvanic electrochemistry, to grow platinum films from copper nanoparticles asymmetrically seeded onto SiO\textsubscript{2} microparticle supports. In this manner, large quantities of Pt-SiO\textsubscript{2} Janus microswimmers are obtained. Utilising copper as a templating material not only reduces synthesis time, material costs, and toxic waste, but also facilitates the further extension of this methodology to a range of functional materials. This electrochemical approach builds upon previous attempts to overcome the current limitations in microswimmer synthesis and offers exciting opportunities for their future development
Deterministic and stochastic aspects of current-induced magnetization reversal in perpendicular nanomagnets
We study the incubation and transition times that characterize the magnetization switching induced by spin-orbit torques in nanomagnets with perpendicular anisotropy. We present a phenomenological model to interpret the dependence of the incubation time on the amplitude of the voltage pulse and assisting magnetic field and estimate the volume of the seed domain that triggers the switching. Our measurements evidence a correlation between the incubation and transition times that is mediated by the temperature variation during the electric pulse. In addition, we discuss the stochastic distributions of the two times in terms of the energy barriers opposing the nucleation and expansion of the seed domain. We propose two models based on the log-normal and gamma functions to account for the different origin of the variability of the incubation and transition times, which are associated with a single nucleation barrier and multiple pinning sites, respectively.ISSN:1098-0121ISSN:0163-1829ISSN:1550-235XISSN:0556-2805ISSN:2469-9969ISSN:1095-3795ISSN:2469-995
Microswimmers from Scalable Galvanic Displacement
Microswimmers are small particles capable of converting available energy sources into propulsion owing to their compositional asymmetry, and are promising for applications ranging from targeted delivery to enhanced mixing at the microscale. However, current fabrication techniques demonstrate limited scalability and/or rely on the excessive use of expensive precursor materials. Here, a scalable Pickering-wax emulsion technique is combined with galvanic electrochemistry, to grow platinum films from copper nanoparticles asymmetrically seeded onto SiO₂ microparticle supports. In this manner, large quantities of Pt-SiO₂ Janus microswimmers are obtained. Utilizing copper as a templating material not only has the potential to reduce synthesis time, material costs, and toxic waste, but also facilitates the further extension of this methodology to a range of functional materials. This electrochemical approach builds upon previous attempts to overcome the current limitations in microswimmer synthesis and offers exciting opportunities for their future development.ISSN:0934-0866ISSN:1521-411
Wavefront sensing at X-ray free-electron lasers
Here a direct comparison is made between various X-ray wavefront sensing methods with application to optics alignment and focus characterization at X-ray free-electron lasers (XFELs). Focus optimization at XFEL beamlines presents unique challenges due to high peak powers as well as beam pointing instability, meaning that techniques capable of single-shot measurement and that probe the wavefront at an out-of-focus location are desirable. The techniques chosen for the comparison include single-phase-grating Talbot interferometry (shearing interferometry), dual-grating Talbot interferometry (moiré deflectometry) and speckle tracking. All three methods were implemented during a single beam time at the Linac Coherent Light Source, at the X-ray Pump Probe beamline, in order to make a direct comparison. Each method was used to characterize the wavefront resulting from a stack of beryllium compound refractive lenses followed by a corrective phase plate. In addition, difference wavefront measurements with and without the phase plate agreed with its design to within λ/20, which enabled a direct quantitative comparison between methods. Finally, a path toward automated alignment at XFEL beamlines using a wavefront sensor to close the loop is presented