18 research outputs found

    The DAG project, a 4m class telescope: the telescope main structure performances

    No full text
    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.Publisher's Versio

    The 4m international liquid mirror telescope (ILMT)

    Get PDF
    The entire funding has recently been obtained in Belgium for the construction of a 4m Liquid Mirror Telescope. Its prime focus will be equipped with a semi-conventional glass corrector allowing to correct for the TDI effect and a thinned, high quantum efficiency, 4K × 4K pixel equivalent CCD camera. It will be capable of subarcsecond imaging in the i'(760 nm) and possibly r', g' band(s) over a field of ~ 30' in diameter. This facility will be entirely dedicated to a deep photometric and astrometric variability survey over a period of ~ 5 years. In this paper, the working principle of liquid mirror telescopes is first recalled, along with the advantages and disadvantages of the latter over classical telescopes. Several science cases are described. For a good access to one of the galactic poles, the best image quality sites for the ILMT are located either in Northern Chile (latitude near -29°30') or in North-East India (Nainital Hills, latitude near +29°30'). At those geographic latitudes, a deep (i' = 22.5 mag.) survey will approximately cover 90 square degrees at high galactic latitude, which is very useful for gravitational lensing studies as well as for the identification of various classes of interesting galactic and extragalactic objects (cf. microlensed stars, supernovae, clusters, etc.). A description of the telescope, its instrumentation and the handling of the data is also presented
    corecore