60 research outputs found

    A chronic strain of the cystic fibrosis pathogen Pandoraeapulmonicola expresses a heterogenous hypo-acylated lipid A

    Get PDF
    Pandoraeasp. is an emerging Gram-negative pathogen in cystic fibrosis causing severe and persistent inflammation and damageof the lungs. The molecular mechanisms underlying the high pathogenicity ofPandoraeaspecies are still largely unknown. AsGram-negatives,Pandoraeasp. express lipopolysaccharides (LPS) whose recognition by the host immune system triggers aninflammatory response aimed at the bacterial eradication from the infected tissues. The degree of the inflammatory responsestrongly relies on the fine structure of the LPS and, in particular, of its glycolipid moiety, i.e. the lipid A. Here we report thestructure of the lipid A isolated from the LPS of a chronic strain ofP. pulmonicola(RL 8228), one of the most virulent identifiedso far among thePandoraeaspecies. Our data demonstrated that the examined chronic strain produces a smooth-type LPS with acomplex mixture of hypoacylated lipid A species displaying, among other uncommon characteristics, the 2-hydroxylation ofsome of the acyl chains and the substitution by an additional glucosamine on one or both the phosphate groups

    Protective effect of Opuntia ficus-indica L. cladodes against UVA-induced oxidative stress in normal human keratinocytes

    Get PDF
    Opuntia ficus-indica L. is known for its beneficial effects on human health, but still little is known on cladodes as a potent source of antioxidants. Here, a direct, economic and safe method was set up to obtain water extracts from Opuntia ficus-indica cladodes rich in antioxidant compounds. When human keratinocytes were pre-treated with the extract before being exposed to UVA radiations, a clear protective effect against UVA-induced stress was evidenced, as indicated by the inhibition of stress-induced processes, such as free radicals production, lipid peroxidation and GSH depletion. Moreover, a clear protective effect against apoptosis in pre-treated irradiated cells was evidenced. We found that eucomic and piscidic acids were responsible for the anti-oxidative stress action of cladode extract. In conclusion, a bioactive, safe, low-cost and high value-added extract from Opuntia cladodes was obtained to be used for skin health/protection

    Pseudomonas aeruginosa quorum sensing inhibition by clinical isolate Delftia tsuruhatensis 11304: involvement of N-octadecanoylhomoserine lactones

    Get PDF
    Pseudomonas aeruginosa is one of the most common opportunistic pathogens that use quorum sensing (QS) system to regulate virulence factors expression and biofilm development. Delftia sp. 11304 was selected among 663 Gram-negative clinical isolates based on its QS inhibitory activity against P. aeruginosa MMA83 clinical isolate. Whole genome sequencing identified this isolate as D. tsuruhatensis and revealed genetic armamentarium of virulence factors and antibiotic resistance determinants. Ethyl acetate extract of D. tsuruhatensis 11304 culture supernatant (QSI extract) prevented biofilm formation of P. aeruginosa MMA83, but was unable to cause biofilm decomposition. QSI extract showed a synergistic effect in combination with meropenem and gentamycin, against P. aeruginosa MMA83. A dose-dependent reduction of the virulence factors: elastase, rhamnolipid and pyocyanin production by P. aeruginosa MMA83 and significant downregulation of lasI, lasR, rhlI, rhlR, pqs and mvfR expression were observed. Matrix-assisted Laser Desorption Ionization (MALDI) mass spectrometry of D. tsuruhatensis 11304 QSI extract revealed the presence of N-acyl homoserine lactones (AHL) with chain lengths of C12 to C18. The main ion peak was identified as N-octadecanoylhomoserine lactone (C18-HSL). Commercial C18-HSL (20 µM) reduced pyocyanin production as well as mRNA level of the lasI gene. A novel AHL species, dihydroxy-N-octadecanoylhomoserine lactone, was also described

    Pseudomonas aeruginosa quorum sensing inhibition by clinical isolate Delftia tsuruhatensis 11304: involvement of N-octadecanoylhomoserine lactones

    Get PDF
    Pseudomonas aeruginosa is one of the most common opportunistic pathogens that use quorum sensing (QS) system to regulate virulence factors expression and biofilm development. Delftia sp. 11304 was selected among 663 Gram-negative clinical isolates based on its QS inhibitory activity against P. aeruginosa MMA83 clinical isolate. Whole genome sequencing identified this isolate as D. tsuruhatensis and revealed genetic armamentarium of virulence factors and antibiotic resistance determinants. Ethyl acetate extract of D. tsuruhatensis 11304 culture supernatant (QSI extract) prevented biofilm formation of P. aeruginosa MMA83, but was unable to cause biofilm decomposition. QSI extract showed a synergistic effect in combination with meropenem and gentamycin, against P. aeruginosa MMA83. A dose-dependent reduction of the virulence factors: elastase, rhamnolipid and pyocyanin production by P. aeruginosa MMA83 and significant downregulation of lasI, lasR, rhlI, rhlR, pqs and mvfR expression were observed. Matrix-assisted Laser Desorption Ionization (MALDI) mass spectrometry of D. tsuruhatensis 11304 QSI extract revealed the presence of N-acyl homoserine lactones (AHL) with chain lengths of C12 to C18. The main ion peak was identified as N-octadecanoylhomoserine lactone (C-18-HSL). Commercial C-18-HSL (20 mu M) reduced pyocyanin production as well as mRNA level of the lasI gene. A novel AHL species, dihydroxy-N-octadecanoylhomoserine lactone, was also described

    Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis

    Get PDF
    Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-L-glyc-ero-L-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing b-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its a-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.Fil: Di Lorenzo, Flaviana. Università degli Studi di Napoli Federico II; ItaliaFil: Speciale, Immacolata. Università degli Studi di Napoli Federico II; ItaliaFil: Silipo, Alba. Università degli Studi di Napoli Federico II; ItaliaFil: Alías Villegas, Cynthia. Universidad de Sevilla; EspañaFil: Acosta Jurado, Sebastián. Universidad de Sevilla; EspañaFil: Rodríguez Carvajal, Miguel Ángel. Universidad de Sevilla; EspañaFil: Dardanelli, Marta Susana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Palmigiano, Angelo. Consiglio Nazionale delle Ricerche; ItaliaFil: Garozzo, Domenico. Consiglio Nazionale delle Ricerche; ItaliaFil: Ruiz Sainz, José Enrique. Universidad de Sevilla; EspañaFil: Molinaro, Antonio. University of Naples Federico II; ItaliaFil: Vinardell, José María. Universidad de Sevilla; Españ

    Transcriptional responses of Burkholderia cenocepacia to polymyxin B in isogenic strains with diverse polymyxin B resistance phenotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia cenocepacia </it>is a Gram-negative opportunistic pathogen displaying high resistance to antimicrobial peptides and polymyxins. We identified mechanisms of resistance by analyzing transcriptional changes to polymyxin B treatment in three isogenic <it>B. cenocepacia </it>strains with diverse polymyxin B resistance phenotypes: the polymyxin B-resistant parental strain K56-2, a polymyxin B-sensitive K56-2 mutant strain with heptoseless lipopolysaccharide (LPS) (RSF34), and a derivative of RSF34 (RSF34 4000B) isolated through multiple rounds of selection in polymyxin B that despite having a heptoseless LPS is highly polymyxin B-resistant.</p> <p>Results</p> <p>A heptoseless LPS mutant of <it>B. cenocepacia </it>was passaged through multiple rounds of selection to regain high levels of polymyxin B-resistance. This process resulted in various phenotypic changes in the isolate that could contribute to polymyxin B resistance and are consistent with LPS-independent changes in the outer membrane. The transcriptional response of three <it>B. cenocepacia </it>strains to subinhibitory concentrations of polymyxin B was analyzed using microarray analysis and validated by quantitative Real Time-PCR. There were numerous baseline changes in expression between the three strains in the absence of polymyxin B. In both K56-2 and RSF34, similar transcriptional changes upon treatment with polymyxin B were found and included upregulation of various genes that may be involved in polymyxin B resistance and downregulation of genes required for the synthesis and operation of flagella. This last result was validated phenotypically as both swimming and swarming motility were impaired in the presence of polymyxin B. RSF34 4000B had altered the expression in a larger number of genes upon treatment with polymyxin B than either K56-2 or RSF34, but the relative fold-changes in expression were lower.</p> <p>Conclusions</p> <p>It is possible to generate polymyxin B-resistant isolates from polymyxin B-sensitive mutant strains of <it>B. cenocepacia</it>, likely due to the multifactorial nature of polymyxin B resistance of this bacterium. Microarray analysis showed that <it>B. cenocepacia </it>mounts multiple transcriptional responses following exposure to polymyxin B. Polymyxin B-regulated genes identified in this study may be required for polymyxin B resistance, which must be tested experimentally. Exposure to polymyxin B also decreases expression of flagellar genes resulting in reduced swimming and swarming motility.</p

    Chemical Structure of cell-wall components isolated from pathogen bacteria

    Get PDF
    The aim of the present PhD thesis is the extraction, purification and structural elucidation of lipopolysaccharides (LPS) isolated from human pathogen bacteria. LPSs are amphiphilic macromolecules that compose about 75% of the outer membrane of Gram-negative bacteria that are indispensable for the growth and the survival of bacteria. LPS elicits a potent host innate immune response through the TLR4 and MD-2 receptorial complex expressed on diverse phagocytic cells. This recognition is crucial since excessive exposure (or excessive responses) to LPS can lead to an uncontrolled inflammation process, as in case of individuals affected by Cystic Fibrosis (CF) in which premature death occurs after a chronic inflammation state. The basic genetic defect predisposes CF patients to recurrent pulmonary infections that are the major cause of morbidity and mortality in CF. Characteristic CF pathogens include Pseudomonas aeruginosa, bacteria belonging to the Burkholderia cepacia complex (BCC) and the newly identified genus Pandoraea. Since LPS is involved in elicitation of host innate immune response in a structure-dependent mode, the investigation of the LPS structure is mandatory to understand the virulence of the abovementioned microorganisms. A little section of the present PhD work has been also dedicated to the structural elucidation of LPS isolated from extremophilic bacteria since it was previously demonstrated that LPSs from non-pathogenic bacteria exert antagonist or partial antagonist activity towards toxic LPSs. Thus, the structural characterisation of extremophiles LPS represents a new perspective for treatment of pathologies caused or exacerbated by bacterial LPS, such as in case of cystic fibrosis disease

    The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS

    No full text
    The structural characterization of the lipopolysaccharide (LPS) from extremophiles has important implications in several biomedical and therapeutic applications. The polyextremophile Gram-negative bacterium Halobacteroides lacunaris TB21, isolated from one of the most extreme habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating microorganism to investigate in terms of its LPS component. Here we report the elucidation of the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an inhibitor of the toxic Escherichia coli LPS

    Extraction, Purification, and Chemical Degradation of LPS from Gut Microbiota Strains

    No full text
    : It is estimated that more than 500 different bacterial species colonize the human gut, and they are collectively known as the gut microbiota. Such a massive bacterial presence is now considered an additional organ of the human body, thus becoming the object of an intense and daily growing research activity. Gram-negative bacteria represent a large percentage of the gut microbiota strains. The main constituent of the outer membrane of Gram-negatives is the lipopolysaccharide (LPS). Since its first discovery, LPS has been extensively studied for its structure-dependent capability to elicit a potent immune inflammatory reaction when perceived by specific immune receptors present in our body. Therefore, traditionally, LPS, due to its peculiar chemistry, has been associated with pathogenic bacteria, and it has been extensively studied for its dangerous effects on human health. However, LPS is also expressed on the cell surface of harmless and beneficial bacteria that colonize our intestines. This necessarily implies that the LPS from harmless gut microbes is "chemically different" from that owned by pathogenic ones, hence enabling successful colonization of the intestinal tract without creating a threat to the host immune system. Deciphering the structural features of LPS from these gut bacteria is essential to improve our still scarce knowledge of how the human host lives in a harmonious relationship with its own microbiota. To this end, LPS extraction and purification are essential steps in this field of research. Yet working with gut bacteria is extremely complex for a number of reasons, one being related to the fact that they produce an array of other glycans and glycoconjugates, such as capsular polysaccharides and/or exopolysaccharides, which render the isolation and characterization of the sole LPS not at all trivial. Here, we provide a protocol that might help when dealing with LPS from gut microbial species. We describe the preliminary manipulations and checks, extraction, and purification approaches, as well as the necessary chemical manipulations that should be performed to enable the characterization of the structure of an LPS by means of techniques like nuclear magnetic resonance spectroscopy and mass spectrometry

    Lipopolysaccharide structures of Gram-negative populations in the Gut Microbiota and effects on host interactions

    No full text
    The human gastrointestinal tract harbors a heterogeneous and complex microbial community which plays a key role in human health. The gut microbiota controls the development of the immune system by setting systemic threshold for immune activation. Glycoconjugates, such as lipopolysaccharides, from gut bacteria have been shown to be able to elicit both systemic proinflammatory and immunomodulatory responses. This phenomenon is particularly intriguing considering that the immune system is charged with the task to distinguish the beneficial microbes from the pathogens, even if the commensal bacteria have molecular patterns resembling those of the pathogenic counterparts. Therefore, the importance of the chemical structure of these macromolecules in the fine tuning this delicate equilibrium is beyond question. This review offers an overview of the current understanding of chemical peculiarities of the lipopolysaccharides isolated from the gut microbiota, and their relationships to their biological activity in terms of immune system maturation and development
    corecore