57 research outputs found

    Autonomic and wake-sleep effects of the central pharmacological manipulation of the hypocretinergic system in the rat

    Get PDF
    Obiettivo della tesi è stato quello di studiare il ruolo svolto dall’ipotalamo laterale (LH) nella regolazione dei processi di integrazione dell’attività autonomica e termoregolatoria con quella degli stati di veglia e sonno. A questo scopo, l’attività dell’LH è stata inibita per 6 ore (Esperimento A) mediante microiniezioni locali dell’agonista GABAA muscimolo nel ratto libero di muoversi, nel quale sono stati monitorati in continuo l’elelttroencefalogramma, l’elettromiogramma nucale, la pressione arteriosa (PA) e la temperatura ipotalamica (Thy) e cutanea. Gli animali sono stati studiati a temperatura ambientale (Ta) di 24°C e 10°C. I risultati hanno mostrato che l’inibizione acuta dell’LH riduce l’attività di veglia e sopprime la comparsa del sonno REM. Ciò avviene attraverso l’induzione di uno stato di sonno NREM caratterizzato da ipersincronizzazione corticale, con scomparsa degli stati transizionali al sonno REM. Quando l’animale è esposto a bassa Ta, tali alterazioni si associano a un ampio calo della Thy, che viene compensato da meccanismi vicarianti solo dopo un paio d’ore dall’iniezione. Sulla base di tali risultati, si è proceduto ad un ulteriore studio (Esperimento B) volto ad indagare il ruolo del neuropeptide ipocretina (prodotto in modo esclusivo a livello dell’LH) nei processi termoregolatori, mediante microiniezioni del medesimo nel bulbo rostrale ventromediale (RVMM), stazione cruciale della rete nervosa preposta all’attivazione dei processi termogenetici. La somministrazione di ipocretina è stata in grado di attivare la termogenesi e di potenziare la comparsa della veglia, con concomitante lieve incremento della PA e della frequenza cardiaca, quando effettuata alle Ta di 24°C o di 10°C, ma non alla Ta di 32°C. In conclusione, i risultati indicano che l’LH svolge un ruolo cruciale nella promozione degli stati di veglia e di sonno REM e, per tramite dell’ipocretina, interviene in modo coplesso a livello del RVMM nella regolazione dei processi di coordinamento dell'attività di veglia con quella termoregolatoria.Aim of my thesis was to investigate the lateral hypothalamus (LH) role in the regulation of autonomic and thermoregulatory integration processes with wakefulness and sleep states. For this purpose, LH was inhibited for up to 6 hours ( Experiment A) by local microinjections of the GABAA agonist muscimol in free behaving rats, implanted with electrodes for chronic electroencephalogram, nuchal electromyogram, arterial pressure (PA ), hypothalamic (Thy ) and skin temperature. The animals were exposed to 24 ° C and 10 ° C ambient temperature ( Ta ). The results showed that the acute inhibition of LH reduces wakefulness and suppresses the onset of REM sleep. This occurs through the induction of NREM sleep state, characterized by high cortical synchronization levels, with REM sleep transitional states disappearance. At low Ta, these results were associated with a large Thy decrease, reversed by compensatory systems a couple of hours after the injections. Starting from these results, we proceeded to investigate (Experiment B) the role of the hypocretin neuropeptide (produced exclusively in the LH ) in thermoregulatory processes, microinjecting hypocretin in the Rostral Ventromedial Medulla ( RVMM ), a crucial center of the neural network responsible for the thermogenetic processes activation. The hypocretin administration was able to activate thermogenesis and enhance wakefulness, with concomitant slight blood pressure and heart rate increase, at Ta of 24 ° C and 10 ° C, but not at Ta of 32 ° C. In conclusion, the results indicate that the LH plays a crucial role in wakefulness and REM sleep promotion and, through hypocretin, it intervenes in a complex way in regulating the wakefulness coordination processes, at the RVMM level

    The web of laughter: frontal and limbic projections of the anterior cingulate cortex revealed by cortico-cortical evoked potential from sites eliciting laughter

    Get PDF
    According to an evolutionist approach, laughter is a multifaceted behaviour affecting social, emotional, motor and speech functions. Albeit previous studies have suggested that high-frequency electrical stimulation (HF-ES) of the pregenual anterior cingulate cortex ( pACC) may induce bursts of laughter—suggesting a crucial contribution of this region to the cortical con- trol of this behaviour—the complex nature of laughter implies that outward connections from the pACC may reach and affect a complex network of fron- tal and limbic regions. Here, we studied the effective connectivity of the pACC by analysing the cortico-cortical evoked potentials elicited by single-pulse electrical stimulation of pACC sites whose HF-ES elicited laugh- ter in 12 patients. Once these regions were identified, we studied their clinical response to HF-ES, to reveal the specific functional target of pACC representation of laughter. Results reveal that the neural representation of laughter in the pACC interacts with several frontal and limbic regions, including cingulate, orbitofrontal, medial prefrontal and anterior insular regions—involved in interoception, emotion, social reward and motor be- haviour. These results offer neuroscientific support to the evolutionist approach to laughter, providing a possible mechanistic explanation of the interplay between this behaviour and emotion regulation, speech production and social interactions. This article is part of the theme issue ‘Cracking the laugh code: laughter through the lens of biology, psychology, and neuroscience’

    Language lateralization mapping (reversibly) masked by non-dominant focal epilepsy: a case report

    Get PDF
    Language lateralization in patients with focal epilepsy frequently diverges from the left-lateralized pattern that prevails in healthy right-handed people, but the mechanistic explanations are still a matter of debate. Here, we debate the complex interaction between focal epilepsy, language lateralization, and functional neuroimaging techniques by introducing the case of a right-handed patient with unaware focal seizures preceded by aphasia, in whom video-EEG and PET examination suggested the presence of focal cortical dysplasia in the right superior temporal gyrus, despite a normal structural MRI. The functional MRI for language was inconclusive, and the neuropsychological evaluation showed mild deficits in language functions. A bilateral stereo-EEG was proposed confirming the right superior temporal gyrus origin of seizures, revealing how ictal aphasia emerged only once seizures propagated to the left superior temporal gyrus and confirming, by cortical mapping, the left lateralization of the posterior language region. Stereo-EEG-guided radiofrequency thermocoagulations of the (right) focal cortical dysplasia not only reduced seizure frequency but led to the normalization of the neuropsychological assessment and the “restoring” of a classical left-lateralized functional MRI pattern of language. This representative case demonstrates that epileptiform activity in the superior temporal gyrus can interfere with the functioning of the contralateral homologous cortex and its associated network. In the case of presurgical evaluation in patients with epilepsy, this interference effect must be carefully taken into consideration. The multimodal language lateralization assessment reported for this patient further suggests the sensitivity of different explorations to this interference effect. Finally, the neuropsychological and functional MRI changes after thermocoagulations provide unique cues on the network pathophysiology of focal cortical dysplasia and the role of diverse techniques in indexing language lateralization in complex scenarios

    Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: Study protocol for a randomized controlled trial

    Get PDF
    Background: Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. Methods/design: In this study, 206 spontaneously breathing infants born at 24+0-27+6 weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. Discussion: From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. Trial registration: ClinicalTrials.gov identifier: NCT02482766. Registered on 1 June 2015

    Validation of ‘Somnivore’, a Machine Learning Algorithm for Automated Scoring and Analysis of Polysomnography Data

    Get PDF
    Manual scoring of polysomnography data is labor-intensive and time-consuming, and most existing software does not account for subjective differences and user variability. Therefore, we evaluated a supervised machine learning algorithm, SomnivoreTM, for automated wake–sleep stage classification. We designed an algorithm that extracts features from various input channels, following a brief session of manual scoring, and provides automated wake-sleep stage classification for each recording. For algorithm validation, polysomnography data was obtained from independent laboratories, and include normal, cognitively-impaired, and alcohol-treated human subjects (total n = 52), narcoleptic mice and drug-treated rats (total n = 56), and pigeons (n = 5). Training and testing sets for validation were previously scored manually by 1–2 trained sleep technologists from each laboratory. F-measure was used to assess precision and sensitivity for statistical analysis of classifier output and human scorer agreement. The algorithm gave high concordance with manual visual scoring across all human data (wake 0.91 ± 0.01; N1 0.57 ± 0.01; N2 0.81 ± 0.01; N3 0.86 ± 0.01; REM 0.87 ± 0.01), which was comparable to manual inter-scorer agreement on all stages. Similarly, high concordance was observed across all rodent (wake 0.95 ± 0.01; NREM 0.94 ± 0.01; REM 0.91 ± 0.01) and pigeon (wake 0.96 ± 0.006; NREM 0.97 ± 0.01; REM 0.86 ± 0.02) data. Effects of classifier learning from single signal inputs, simple stage reclassification, automated removal of transition epochs, and training set size were also examined. In summary, we have developed a polysomnography analysis program for automated sleep-stage classification of data from diverse species. Somnivore enables flexible, accurate, and high-throughput analysis of experimental and clinical sleep studies

    Bronchopulmonary dysplasia: an old and new disease

    No full text
    Bronchopulmonary dysplasia (BPD) is one of the most common and significant medical complications associated with prematurity. It is made more serious by its morbidity and mortality rates. Although recent advances in clinical practice (prenatal steroids, surfactants, new ventilatory strategies, nutritional support) have contributed to improving the clinical course and outcomes of neonates with BPD, its overall incidence has not changed in the last decade owing to a concomitant increase in survival of prematures. The incidence of BPD is in fact inversely proportional to birth weight: 30% for neonates weighing less than 1,000 g, with different percentages in the single centres depending on clinical management and the ventilation criteria applied. However, to date, BPD represents not only a chronic pulmonary pathology in infancy that prevalently affects premature neonates who undergo mechanical ventilation and oxygen therapy for respiratory distress syndrome (RDS), but also prematures with minor signs of initial pulmonary pathology or term neonates requiring aggressive ventilatory support due to an acute and severe lung pathology. Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014) · Cagliari (Italy) · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyke

    Provocative motion causes fall in brain temperature and affects sleep in rats

    No full text
    Neural substrate of nausea is poorly understood, contrasting the wealth of knowledge about the emetic reflex. One of the reasons for this knowledge deficit is limited number and face validity of animal models of nausea. Our aim was to search for new physiological correlates of nausea in rats. Specifically, we addressed the question whether provocative motion (40-min rotation at 0.5 Hz) affects sleep architecture, brain temperature, heart rate (HR) and arterial pressure. Six adult male Sprague-Dawley rats were instrumented for recordings of EEG, nuchal electromyographic, hypothalamic temperature and arterial pressure. Provocative motion had the following effects: (1) total abolition of REM sleep during rotation and its substantial reduction during the first hour post-rotation (from 20 \ub1 3 to 5 \ub1 1.5 %); (2) reduction in NREM sleep, both during rotation (from 57 \ub1 6 to 19 \ub1 5 %) and during the first hour post-rotation (from 56 \ub1 3 to 41 \ub1 9 %); (3) fall in the brain temperature (from 37.1 \ub1 0.1 to 36.0 \ub1 0.1 \ub0C); and (4) reduction in HR (from 375 \ub1 6 to 327 \ub1 7 bpm); arterial pressure was not affected. Ondansetron, a 5-HT3 antagonist, had no major effect on all observed parameters during both baseline and provocative motion. We conclude that in rats, provocative motion causes prolonged arousing effects, however without evidence of sympathetic activation that usually accompanies heightened arousal. Motion-induced fall in the brain temperature complements and extends our previous observations in rats and suggests that similar to humans, provocative motion triggers coordinated thermoregulatory response, leading to hypothermia in this species

    Molecular determinants of peculiar properties of a Pleurotus ostreatus laccase: Analysis by site-directed mutagenesis

    No full text
    A comparison of laccase sequences highlighted the presence of a C-terminal extension of sixteen amino acids in POXA1b laccase – that represents the most thermostable isoenzyme among Pleurotus ostreatus laccases and exhibits a notable stability at alkalinepH(t1/2 atpH10 = 30 days) – whereas this tail is missing in the other analysed laccases from basidiomycetes. Site-directed mutagenesis experiments allowed us to demonstrate a role of the C-terminal tail of POXA1b in affecting its catalytic and stability properties. The truncated mutants lose the high stability at pH 10, while they show an increased stability at pH 5. The effect of substituting the residue Asp205 of POXA1b with an arginine was also analysed in the mutant POXA1bD205R. Following the mutation POXA1bD205R, a remarkable worsening of catalytic properties along with a decrease of substrate affinity and of enzyme stability were found. It was demonstrated that introducing Arg205 mutation in a highly conserved region perturbs the structural local environment in POXA1b, leading to a large rearrangement of the enzyme structure. Hence, a single substitution in the binding site introduces a local conformational change that not only leads to very different catalytic properties, but can also significantly destabilize the protein

    Does chronic exposure to electromagnetic fields combined with noise has effects on sleep and homeostasis in juvenile rats?

    No full text
    24th Congress of the European-Sleep-Research-Society (ESRS), Basel, SWITZERLAND, SEP 25-28, 2018International audienc
    corecore