36 research outputs found

    Fatty-Acid Preference Changes during Development in Drosophila melanogaster

    Get PDF
    Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation behavior. Adults generally preferred SFAs, and laid more eggs and had a longer life span when ingesting these substances as compared to UFAs. Our data suggest that insects can discriminate long-chain dietary FAs. The developmental change in preference shown by this species might reflect functional variation in use of FAs or stage-specific nutritional requirements, and may be fundamental for insect use of these major dietary components

    Fatty acid perception in Drosophila melanogaster : plasticity and metabolic consequences

    No full text
    Les acides gras (AGs) sont impliqués dans de nombreuses fonctions biologiques, allant de la composition des membranes cellulaires au stockage de l’énergie, en passant par la biosynthèse des hormones. En terme de santé publique, les conséquences d'une surconsommation en AGs sont très préoccupantes, l’OMS estimant que 2.8 millions de décès par an sont dus à l'obésité et à ses effets secondaires. Si le métabolisme lipidique est relativement bien connu, les mécanismes sous-jacents à la détection et à la préférence pour les AGs restent peu étudiés. Quelques études ont montré que la préférence des mammifères pour les AGs est modifiée par une exposition précoce à ces composés, mais peu de choses sont connues concernant les effets à long terme (intergénérationnel) d'une exposition aux AGs sur leur perception et le comportement alimentaire.La majorité des observations a été réalisée sur les mammifères ; les invertébrés, comme la Drosophile, ont été délaissés malgré leurs avantages (durée du cycle de développement, facilité d'élevage, outils génétiques) et malgré la bonne conservation des acteurs du métabolisme lipidique au cours de l’évolution. Il a été récemment montré dans notre laboratoire, que les larves et les adultes de Drosophila melanogaster sont capables de détecter et de discriminer les AGs en fonction de leur degré d’insaturation, et que leurs préférences vis-à-vis des AGs varient: les larves sont attirées par les AGs insaturés et repoussées par les AGs saturés alors que les adultes sont repoussés par les AGs insaturés et sont indifférents aux AGs saturés. Il a été suggéré que cette évolution des préférences pourrait refléter des besoins métaboliques différents chez la larve et chez l'adulte.Durant ma thèse, j'ai étudié les conséquences, intra- et intergénérationnelles, d’une exposition à un milieu enrichi en AG saturé (acide stéarique = C18:0) ou en AG insaturé (acide oléique = C18:1), sur les préférences larvaires et adultes (choix du site d'oviposition) ainsi que sur différents traits de vie. L'évolution des préférences larvaires et adultes pour ces deux AGs à l’aide de deux procédures de sélection a également été obordée.Les résultats obtenus montrent que, si les processus de sélections ne modifient pas durablement les préférences des individus envers les deux AGs utilisés, le comportement d'individus exposés, soit ponctuellement durant leur développement, soit de manière permanente sur une à dix générations, est affecté par cette exposition. Le choix du site de ponte par les femelles est modifié spécifiquement suite à une exposition au C18:0 ou au C18:1 durant leur développement larvaire. Si l'influence d'une expérience sensorielle précoce sur les préférences alimentaires de l'adulte avait déjà été mise en évidence chez certains mammifères et quelques insectes holométaboles (dont le système nerveux est presque complètement remanié durant la métamorphose), c'est la première fois qu'un tel phénomène est clairement démontré chez la Drosophile. Nous avons pu montrer qu’une exposition permanente à chacun des AGs modifie durablement à la fois les préférences d'oviposition et certains traits de vie majeurs (durée de développement, sex-ratio, fécondité et survie adulte). Ces résultats suggèrent que la Drosophile est capable de s'adapter à des nourritures variées et que cette plasticité, vraisemblablement déterminée génétiquement, pourrait expliquer le succès de cette espèce généraliste. Outre leur intérêt "écologique", ces observations démontrent l'intérêt du modèle Drosophile pour l'étude de la plasticité intra- et inter-générationelle des préférences envers les AGs.Fatty acids (FAs) are involved in many biological functions, from the cell membrane composition to energy storage, through hormone biosynthesis. The consequences of FAs overconsumption are of great concern in terms of public health since the WHO estimates that 2.8 million annual deaths due to obesity and its side effects. If lipid metabolism is relatively well known, the mechanisms underlying the detection and preference for FAs remain little studied. While some studies have shown that the preference of mammals for FAs is modified by early exposure to these compounds, little is known about FAs long-term effects on both their perception and food preference.The majority of studies have been conducted in mammals, invertebrates being neglected despite the benefits (life cycle, size, ease of breeding, genetic tools) of some models, such as Drosophila, and despite the good conservation of lipid metabolism actors during evolution. It has recently been shown that both Drosophila melanogaster larvae and adults are able to detect and discriminate FAs according to their unsaturation. Moreover, larval and adult preferences are different: the larvae are attracted by unsaturated FAs (UFAs) and repelled by saturated FAs (SFAs) while adults are repelled by the UFAs and indifferent to SFAs. It has been suggested that these preferences change may reflect different metabolic requirements between larvae and adults.During my PhD, I studied the effects of intra -and inter- generational exposure to a medium enriched either with a SFA (stearic acid = C18: 0) either with a UFA (oleic acid = C18: 1) on larval and adult preferences (oviposition site selection) toward these FAs, as well as on different life traits. On the other hand, I tested the evolution of both larval and adult preferences for these two FAs after two selection procedures, using these preferences as a selection criterion.My results show that if the selection processes do not permanently modify the individual preferences for both FAs considered, the behavior of individuals exposed either occasionally during development, either permanently from one to ten generations, is affected by this exposure. In particular, the egg-laying site choice by females is specifically modified by exposure to C18:0 and C18:1 during larval development. If the influence of early sensory experience on food preferences of adults had already been demonstrated in mammals and some holometabolous insects (whose nervous system is almost completely remodeled during metamorphosis), this is the first time that such a phenomenon is clearly demonstrated in Drosophila. On the other hand, continuous exposure to each of these FAs permanently alters both oviposition preferences and major life traits (development time, sex ratio, fecundity and adult survival). These results suggest that Drosophila is able to adapt to different foods, and this plasticity, probably genetically determined, may explain the success of this generalist species. In addition to their ecological interest, these results also demonstrate the usefulness of this model for the study of intra -and inter- generational preferences plasticity towards FAs

    Perception des acides gras chez Drosophila melanogaster : plasticité et conséquences métaboliques

    No full text
    Fatty acids (FAs) are involved in many biological functions, from the cell membrane composition to energy storage, through hormone biosynthesis. The consequences of FAs overconsumption are of great concern in terms of public health since the WHO estimates that 2.8 million annual deaths due to obesity and its side effects. If lipid metabolism is relatively well known, the mechanisms underlying the detection and preference for FAs remain little studied. While some studies have shown that the preference of mammals for FAs is modified by early exposure to these compounds, little is known about FAs long-term effects on both their perception and food preference.The majority of studies have been conducted in mammals, invertebrates being neglected despite the benefits (life cycle, size, ease of breeding, genetic tools) of some models, such as Drosophila, and despite the good conservation of lipid metabolism actors during evolution. It has recently been shown that both Drosophila melanogaster larvae and adults are able to detect and discriminate FAs according to their unsaturation. Moreover, larval and adult preferences are different: the larvae are attracted by unsaturated FAs (UFAs) and repelled by saturated FAs (SFAs) while adults are repelled by the UFAs and indifferent to SFAs. It has been suggested that these preferences change may reflect different metabolic requirements between larvae and adults.During my PhD, I studied the effects of intra -and inter- generational exposure to a medium enriched either with a SFA (stearic acid = C18: 0) either with a UFA (oleic acid = C18: 1) on larval and adult preferences (oviposition site selection) toward these FAs, as well as on different life traits. On the other hand, I tested the evolution of both larval and adult preferences for these two FAs after two selection procedures, using these preferences as a selection criterion.My results show that if the selection processes do not permanently modify the individual preferences for both FAs considered, the behavior of individuals exposed either occasionally during development, either permanently from one to ten generations, is affected by this exposure. In particular, the egg-laying site choice by females is specifically modified by exposure to C18:0 and C18:1 during larval development. If the influence of early sensory experience on food preferences of adults had already been demonstrated in mammals and some holometabolous insects (whose nervous system is almost completely remodeled during metamorphosis), this is the first time that such a phenomenon is clearly demonstrated in Drosophila. On the other hand, continuous exposure to each of these FAs permanently alters both oviposition preferences and major life traits (development time, sex ratio, fecundity and adult survival). These results suggest that Drosophila is able to adapt to different foods, and this plasticity, probably genetically determined, may explain the success of this generalist species. In addition to their ecological interest, these results also demonstrate the usefulness of this model for the study of intra -and inter- generational preferences plasticity towards FAs.Les acides gras (AGs) sont impliqués dans de nombreuses fonctions biologiques, allant de la composition des membranes cellulaires au stockage de l’énergie, en passant par la biosynthèse des hormones. En terme de santé publique, les conséquences d'une surconsommation en AGs sont très préoccupantes, l’OMS estimant que 2.8 millions de décès par an sont dus à l'obésité et à ses effets secondaires. Si le métabolisme lipidique est relativement bien connu, les mécanismes sous-jacents à la détection et à la préférence pour les AGs restent peu étudiés. Quelques études ont montré que la préférence des mammifères pour les AGs est modifiée par une exposition précoce à ces composés, mais peu de choses sont connues concernant les effets à long terme (intergénérationnel) d'une exposition aux AGs sur leur perception et le comportement alimentaire.La majorité des observations a été réalisée sur les mammifères ; les invertébrés, comme la Drosophile, ont été délaissés malgré leurs avantages (durée du cycle de développement, facilité d'élevage, outils génétiques) et malgré la bonne conservation des acteurs du métabolisme lipidique au cours de l’évolution. Il a été récemment montré dans notre laboratoire, que les larves et les adultes de Drosophila melanogaster sont capables de détecter et de discriminer les AGs en fonction de leur degré d’insaturation, et que leurs préférences vis-à-vis des AGs varient: les larves sont attirées par les AGs insaturés et repoussées par les AGs saturés alors que les adultes sont repoussés par les AGs insaturés et sont indifférents aux AGs saturés. Il a été suggéré que cette évolution des préférences pourrait refléter des besoins métaboliques différents chez la larve et chez l'adulte.Durant ma thèse, j'ai étudié les conséquences, intra- et intergénérationnelles, d’une exposition à un milieu enrichi en AG saturé (acide stéarique = C18:0) ou en AG insaturé (acide oléique = C18:1), sur les préférences larvaires et adultes (choix du site d'oviposition) ainsi que sur différents traits de vie. L'évolution des préférences larvaires et adultes pour ces deux AGs à l’aide de deux procédures de sélection a également été obordée.Les résultats obtenus montrent que, si les processus de sélections ne modifient pas durablement les préférences des individus envers les deux AGs utilisés, le comportement d'individus exposés, soit ponctuellement durant leur développement, soit de manière permanente sur une à dix générations, est affecté par cette exposition. Le choix du site de ponte par les femelles est modifié spécifiquement suite à une exposition au C18:0 ou au C18:1 durant leur développement larvaire. Si l'influence d'une expérience sensorielle précoce sur les préférences alimentaires de l'adulte avait déjà été mise en évidence chez certains mammifères et quelques insectes holométaboles (dont le système nerveux est presque complètement remanié durant la métamorphose), c'est la première fois qu'un tel phénomène est clairement démontré chez la Drosophile. Nous avons pu montrer qu’une exposition permanente à chacun des AGs modifie durablement à la fois les préférences d'oviposition et certains traits de vie majeurs (durée de développement, sex-ratio, fécondité et survie adulte). Ces résultats suggèrent que la Drosophile est capable de s'adapter à des nourritures variées et que cette plasticité, vraisemblablement déterminée génétiquement, pourrait expliquer le succès de cette espèce généraliste. Outre leur intérêt "écologique", ces observations démontrent l'intérêt du modèle Drosophile pour l'étude de la plasticité intra- et inter-générationelle des préférences envers les AGs

    Fluorescent Microscopy-Based Detection of Chitin in Intact Drosophila melanogaster

    No full text
    Chitin is the major scaffolding component of the insect cuticle. Ultrastructural analyses revealed that chitin adopts a quasi-crystalline structure building sheets of parallel running microfibrils. These sheets called laminae are stacked either helicoidally or with a preferred orientation of the microfibrils. Precise control of chitin synthesis is mandatory to ensure the correct chitin assembly and in turn proper function of cuticular structures. Thus, evaluation of chitin-metabolism deficient phenotypes is a key to our understanding of the function of the proteins and enzymes involved in cuticle architecture and more generally in cuticle biology in insects. Usually, these phenotypes have been assessed using electron microscopy, which is time-consuming and labor intensive. This stresses the need for rapid and straightforward histological methods to visualize chitin at the whole tissue level. Here, we propose a simple method of chitin staining using the common polysaccharide marker Fluorescent brightener 28 (FB28) in whole-mount Drosophila melanogaster. To overcome the physical barrier of FB28 penetration into the cuticle, staining is performed at 65°C without affecting intactness. We quantify FB28 fluorescence in three functionally different cuticular structures namely wings, dorsal abdomens and forelegs by fluorescence microscopy. We find that, as expected, cuticle pigmentation may interfere with FB28 staining. Down-regulation of critical genes involved in chitin metabolism, including those coding for chitin synthase or chitinases, show that FB28 fluorescence reflects chitin content in these organs. We think that this simple method could be easily applied to a large variety of intact insects

    Saturated and unsaturated fatty acids: behavioural responses and plasticity fatty acids as relevant stimuli in Drosophila?

    No full text
    Saturated and unsaturated fatty acids: behavioural responses and plasticity fatty acids as relevant stimuli in [i]Drosophila[/i]?. 13. rencontre du club de neurobiologie des invertébré

    Ratio between Lactobacillus plantarum and Acetobacter pomorum on the surface of Drosophila melanogaster adult flies depends on cuticle melanisation

    No full text
    Objectives!#!As in most organisms, the surface of the fruit fly Drosophila melanogaster is associated with bacteria. To examine whether this association depends on cuticle quality, we isolated and quantified surface bacteria in normal and melanized flies applying a new and simple protocol.!##!Results!#!On wild flies maintained in the laboratory, we identified two persistently culturable species as Lactobacillus plantarum and Acetobacter pomorum by 16S rDNA sequencing. For quantification, we showered single flies for DNA extraction avoiding the rectum to prevent contamination from the gut. In quantitative PCR analyses, we determined the relative abundance of these two species in surface wash samples. On average, we found 17-times more A. pomorum than L. plantarum. To tentatively study the importance of the cuticle for the interaction of the surface with these bacteria, applying Crispr/Cas9 gene editing in the initial wild flies, we generated flies mutant for the ebony gene needed for cuticle melanisation and determined the L. plantarum to A. pomorum ratio on these flies. We found that the ratio between the two bacterial species reversed on ebony flies. We hypothesize that the cuticle chemistry is crucial for surface bacteria composition. This finding may inspire future studies on cuticle-microbiome interactions

    Intra- and intergenerational exposition to dietary fatty-acids affects behavior and fitness in D. melanogaster

    No full text
    Intra- and intergenerational exposition to dietary fatty-acids affects behavior and fitness in D. melanogaster. ESITO 13. meetin
    corecore