242 research outputs found

    An update on peptide-based therapies for type 2 diabetes and obesity

    Get PDF
    Long-acting analogues of the naturally occurring incretin, glucagon-like peptide-1 (GLP-1) and those modified to interact also with receptors for glucose-dependent insulinotropic polypeptide (GIP) have shown high glucose-lowering and weight-lowering efficacy when administered by once-weekly subcutaneous injection. These analogues herald an exciting new era in peptide-based therapy for type 2 diabetes (T2D) and obesity. Of note is the GLP-1R agonist semaglutide, available in oral and injectable formulations and in clinical trials combined with the long-acting amylin analogue, cagrilintide. Particularly high efficacy in both glucose- and weight lowering capacities has also been observed with the GLP-1R/GIP-R unimolecular dual agonist, tirzepatide. In addition, a number of long-acting unimolecular GLP-1R/GCGR dual agonist peptides and GLP-1R/GCGR/GIPR triagonist peptides have entered clinical trials. Other pharmacological approaches to chronic weight management include the human monoclonal antibody, bimagrumab which blocks activin type II receptors and is associated with growth of skeletal muscle, an antibody blocking activation of GIPR to which are conjugated GLP-1R peptide agonists (AMG-133), and the melanocortin-4 receptor agonist, setmelanotide for use in certain inherited obesity conditions. The high global demand for the GLP-1R agonists liraglutide and semaglutide as anti-obesity agents has led to shortage so that their use in T2D therapy is currently being prioritized. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

    Differential Acute and Long Term Actions of Succinic Acid Monomethyl Ester Exposure on Insulin-Secreting BRIN-BD11 Cells

    Get PDF
    Esters of succinic acid are potent insulin secretagogues, and have been proposed as novel antidiabetic agents for type 2 diabetes. This study examines the effects of acute and chronic exposure to succinic acid monomethyl ester (SAM) on insulin secretion, glucose metabolism and pancreatic beta cell function using the BRIN-BD11 cell line. SAM stimulated insulin release in a dose-dependent manner at both non-stimulatory (1.1mM) and stimulatory (16.7mM) glucose. The depolarizing actions of arginine also stimulated a significant increase in SAM-induced insulin release but 2-ketoisocaproic acid (KIC) inhibited SAM induced insulin secretion indicating a possible competition between the preferential oxidative metabolism of these two agents. Prolonged (18hour) exposure to SAM revealed decreases in the insulin-secretory responses to glucose, KIC, glyceraldehyde and alanine. Furthermore, SAM diminished the effects of nonmetabolized secretagogues arginine and 3-isobutyl-1-methylxanthine (IBMX). While the ability of BRIN-BD11 cells to oxidise glucose was unaffected by SAM culture, glucose utilization was substantially reduced. Collectively, these data suggest that while SAM may enhance the secretory potential of non-metabolized secretagogues, it may also serve as a preferential metabolic fuel in preference to other important physiological nutrients and compromise pancreatic beta cell function following prolonged exposure

    Incretins play an important role in FFA4/GPR120 regulation of glucose metabolism by GW-9508

    Get PDF
    Aims: To assess the role of GPR120 in glucose metabolism and incretin regulation from enteroendocrine L- and K-cells with determination of the cellular localisation of GPR120 in intestinal tissue and clonal Glucagon-Like Peptide-1 (GLP-1)/Gastric Inhibitory Polypeptide (GIP) cell lines. Main methods: Anti-hyperglycaemic, insulinotropic and incretin secreting properties of the GPR120 agonist, GW-9508 were explored in combination with oral and intraperitoneal glucose tolerance tests (GTT) in lean, diabetic and incretin receptor knockout mice. Cellular localisation of GPR120 was assessed by double immunofluorescence. Key findings: Compared to intraperitoneal injection, oral administration of GW-9508 (0.1 μmol/kg body weight) together with glucose reduced the glycaemic excursion by 22–31 % (p &lt; 0.05-p &lt; 0.01) and enhanced glucose-induced insulin release by 30 % (p &lt; 0.01) in normal mice. In high fat fed diabetic mice, orally administered GW-9508 lowered plasma glucose by 17–27 % (p &lt; 0.05-p &lt; 0.01) and augmented insulin release by 22–39 % (p &lt; 0.05-p &lt; 0.001). GW-9508 had no effect on the responses of GLP-1 receptor knockout mice and GIP receptor knockout mice. Consistent with this, oral GW-9508 increased circulating total GLP-1 release by 39–44 % (p &lt; 0.01) and total GIP by 37–47 % (p &lt; 0.01-p &lt; 0.001) after 15 and 30 min in lean NIH Swiss mice. Immunocytochemistry demonstrated GPR120 expression on mouse enteroendocrine L- and K-cells, GLUTag cells and pGIP/Neo STC-1 cells. Significance: GPR120 is expressed on intestinal L- and K-cells and stimulates GLP-1/GIP secretory pathways involved in mediating enhanced insulin secretion and improved glucose tolerance, following oral GW-9508. These novel data strongly support the development of potent and selective GPR120 agonists as an effective therapeutic approach for diabetes.</p

    Functional Enhancement of Electrofusion-derived BRIN-BD11 Insulin-secreting Cells After Implantation into Diabetic Mice

    Get PDF
    Electrofusion-derived BRIN-BD11 cells are glucosesensitive insulin-secreting cells which provide an archetypal bioengineered surrogate β-cell for insulin replacement therapy in diabetes mellitus, 5x106 BRIN-BD11 cells were implanted intraperitoneally into severely hyperglycaemic (>24mmol/l) streptozotocin-induced insulin-treated diabetic athymic nude (nu/nu) mice. The implants reduced hyperglycaemia such that insulin injections were discontinued by 5–16 days (<17mmol/l) and normoglycaemia (<9mmol/l) was achieved by 7–20 days. Implanted cells were removed after 28 days and re-established in culture. After re-culture for 20 days, glucose-stimulated (16.7mmol/l) insulin release was enhanced by 121% (p<0.001) compared to non-implanted cells. Insulin responses to glucagon-like peptide-1 (10−9mol/l), cholecystokinin-8 (10−8 mol/l) and L-alanine (10 mmol/l) were increased by 32%, 31% and 68% respectively (p<0.05–0.01). Insulin content of the cells was 148% greater at 20 days after re-culture than before implantation (p<0.001), but basal insulin release (at 5.6 mmol/l glucose) was not changed. After re-culture for 40 days, insulin content declined to 68% of the content before implantation (p<0.01), although basal insulin release was unchanged. However, the insulin secretory responses to glucose, glucagonlike peptide-1, cholecystokinin-8 and L-alanine were decreased after 40 days of re-culture to 65%, 72%, 73% and 42% respectively of the values before implantation (p<0.05–0.01). The functional enhancement of electrofusion-derived surrogate β-cells that were re-cultured for 20 days after implantation and restoration of normoglycaemia indicates that the in vivo environment could greatly assist β-cell engineering approaches to therapy for diabetes
    • …
    corecore