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Abstract 
Objectives Within mammalian pancreatic islets, there are two major endocrine cell types, beta-cells which secrete insulin and alpha-cells which 
secrete glucagon. Whereas, insulin acts to lower circulating glucose, glucagon counters this by increasing circulating glucose via the mobilisation 
of glycogen. Synthalin A (Syn A) was the subject of much research in the 1920s and 1930s as a potential pancreatic alpha-cell toxin to block 
glucagon secretion. However, with the discovery of insulin and its lifesaving use in patients with diabetes, research on Syn-A was discontinued.
Key findings This short review looks back on early studies performed with Syn A in animals and humans with diabetes. These are relevant today 
because both type 1 and type 2 diabetes are now recognised as states of not only insulin deficiency but also glucagon excess.
Summary Lessons learned from this largely forgotten portfolio of work and therapeutic strategy aimed at limiting the number or function of islet 
alpha-cells might be worthy of reconsideration.
Keywords: Synthalin (Syn); diabetes; alpha-cells; beta-cells; pancreatic islets; glucagon

Core tip: This review examines the history of synthalin A 
and its early evaluation as a potential diabetes treatment. 
The research was discontinued as insulin became available 
for the treatment of diabetes. However, re-evaluation of 
this early work may provide a useful perspective on alpha-
cell function and therapeutic strategies to diminish gluca-
gon secretion or action in diabetes.

Introduction
Fatal degenerative diabetes mellitus, now recognised as type 
1 (insulin-dependent) diabetes, has been described in some 
of the earliest known medical texts, and before the dis-
covery of insulin in 1921 the usual treatment was only palli-
ative – starvation diets, sometimes supplemented with herbal 
medicines.[1] Among the herbal medicines, Galega officinalis 
has been described as a treatment for thirst and excess uri-
nation (early symptoms of diabetes) since the 1700s, and 
in 1850 (or thereabouts) this plant was shown to be rich in 
guanidine.[2] Some logic to the use of G. officinalis in diabetes 
was provided by the work of Watanabe who noted in 1918 
that guanidine reduced blood glucose.[3] Unfortunately, effec-
tive amounts of guanidine (Figure 1) were not without tox-
icity, precluding use as a medicine. However, it was quickly 
noted that a monoguanidine derivative (galegine) and some 
diguanide derivatives [particularly synthalin A (Syn A) and 
synthalin B (Syn B)] retained the glucose-lowering effect 

with less toxicity.[4] Galegine was tried only briefly as a treat-
ment for diabetes, but Syn A and Syn B were used widely 
as medicines by the late 1920s.[4] Surprisingly, the closely re-
lated biguanide molecules, phenformin and metformin, were 
identified at this time, but their antidiabetic properties were 
not appreciated and had to await rediscovery in the 1950s.[5]

Although Syn A and Syn B did not offer the life-saving ef-
fectiveness of insulin for type 1 diabetes, the limited supplies 
of insulin forced many patients in Europe to continue their use 
of alternative therapies into the 1930s. This article examines 
how the diguanide agents helped to control blood glucose for 
some patients, how animal studies revealed the mechanism, 
and what lessons are offered for supplementary approaches to 
manage the various types of diabetes we recognise today. This 
article examines how the diguanide agents helped to control 
blood glucose for some patients, how animal studies revealed 
the mechanism, and what important new lessons are offered 
by re-examining old literature for supplementary approaches 
to manage the various types of diabetes we recognise today.

Historical Aspects of Diabetes and 
Involvement of Glucagon
Most cases of diabetes reported 100 years ago described se-
vere degenerative conditions typically associated with onset 
in early life, emaciation, ketonuria and premature death.[1] 
This was subsequently termed juvenile-onset diabetes and 
more latterly insulin-dependent or type 1 diabetes. The other 
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main type of diabetes (non-insulin-dependent or maturity-
onset diabetes), now known as type 2 diabetes, became in-
creasingly recognised after the availability of insulin when 
patients with less severe symptoms were found to be insen-
sitive to insulin and required excessive doses of insulin to 
control blood glucose.[6] This type of diabetes was desig-
nated as a separate disease in the 1950s[7]: it is often associ-
ated with obesity and currently represents about 90% of all 
cases of the disease worldwide.[8] Although advanced stages 
of type 2 diabetes may require insulin treatment to achieve 
adequate blood glucose control, treatments for the majority 
of type 2 patients offer scope for non-insulin medicines that 
lower blood glucose such as metformin, sulphonylureas, 
thiazolidenediones, sodium-glucose transporter-2 (SGLT2) 
inhibitors, dipeptidylpeptidase-IV (DPP-IV) inhibitors and 
glucagon-like peptide-1 (GLP-1) mimetic agents.[9]

Soon after the landmark discovery of insulin, it was 
noted (in 1922) that the pancreas was the source of a sub-
stance that raised blood glucose and was a contaminant of 
early insulin preparations.[1, 10] This substance was identified 
as glucagon in the 1950s[11] and was shown to be secreted 
by the alpha-cells of the islets of Langerhans. It was found 
to be the main counterregulatory hormone, promptly 
increasing blood glucose by simulating hepatic glycogenolysis 
and gluconeogenesis.[12] Since the mid-1970s, it has been 
appreciated that type 2 diabetes is associated with an absolute 
or relative hyperglucagonaemia (raised circulating concentra-
tion of glucagon relative to the blood glucose concentration) 
as well as disturbances of insulin action and insulin secre-
tion.[12] Indeed, the current success of GLP-1 mimetic agents 
in the treatment of type 2 diabetes is attributed partly to their 
ability to inhibit glucagon release as well as increase insulin 

secretion. Interestingly, the guanidine derivatives introduced a 
century ago were helping to lower blood glucose by a toxic ef-
fect on the glucagon-secreting islet alpha-cells, and the search 
for new treatments for type 2 diabetes continues to investi-
gate methods to suppress alpha-cells.[13]

The Synthalins
The diguanide Syn A (Figure 1) was first synthesised and 
proposed as an alpha-cell toxin in 1926 by Erich Frank and 
colleagues in Breslau.[14] Syn A was produced in several forms 
(tablets, injectables and a pure salt)[15] and oral administra-
tion was shown to reduce blood sugar in humans and ani-
mals. When injected into animals, Syn A had a biphasic action 
causing blood sugar to increase transiently before dropping 
into hypoglycaemia (excessively low blood sugar).[15] Studies 
were also conducted with the related diguanide Syn B,[14, 16, 17] 
but early publications did not always specify whether Syn A 
or Syn B was administered. Therefore, when describing the 
mechanism of action in the following paragraphs we some-
times refer to Syn (unspecified) unless the use of Syn A or Syn 
B was specified in the published works.

Morphological changes to pancreatic alpha-cells were 
observed with Syn A treatment, which caused these cells to 
become hydropic, and exhibit cytoplasmic vacuolation.[17, 18] 
It was unknown how Syn A brought about these changes, but 
an increase in functional activity causing cell exhaustion was 
suggested.[18, 19]

Concern about the safety of Syn in clinical studies was 
aroused by accounts of excess proteinuria, haematuria and 
urinary tract infections. There were also reports of digestive, 
hepatic and renal complications, although it was not clear 

Figure 1 Chemical structures of guanidine, Syn A and B, galegine and metformin. (Adapted from Bailey and Day, 2004.)
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if these were related to the treatment or morbidities of dia-
betes.[4] However, safety concerns, limited durability of effi-
cacy and increasing availability of insulin resulted in a decline 
of interest in using Syn as a treatment for diabetes, and the 
diguanides were little used by the end of the 1930s.[4, 20, 21]

Mode of Action of Synthalins
Several studies dating from the 1920s to the 1970s have 
examined the hypoglycaemic mechanism of Syn A, noting 
damage to alpha-cells, with little or no damage to beta-
cells, thereby offering a means of decreasing blood glu-
cose by reducing glucagon secretion in non-diabetic and 
diabetic states.[17, 20, 22–27] At high doses, Syn A produced more 
generalised organ toxicity as well as degeneration of alpha-
cells,[3, 15, 20, 23, 25] and research in the 1950s and 1960s provided 
insights into the cellular mechanisms and species-specificity of 
this toxicity as summarised below.[19, 26, 28–31]

Human Studies
By the late 1920s, Syn was being tested in humans as an 
antidiabetic drug.[16, 32–35] In Boston (USA) in 1927 Elliot 
Joslin treated eight insulin-dependent (type 1) individuals 
with Syn and recorded positive effects with few side effects.[32] 
However, the efficacy varied greatly between individuals: 
for example, one individual required only 1 mg Syn to re-
place 1 unit of insulin while another individual needed 3 mg 
Syn to replace 1 unit of insulin for diabetes control. All but 
one of the patients noted reductions in glycosuria and one 
individual reduced their insulin dose from 28 to 16 units 
daily.[32] However, only one of the patients was followed for 
more than 3 months and only one became temporarily in-
sulin free. In light of current knowledge, it is likely that the 
variable effects of Syn reflect the heterogeneity of type 1 
diabetes in which some patients may retain some endoge-
nous insulin secretion, especially during the early stages of 
the disease.

Similar small short-term studies by Frank et al. (1926)[14] 
and Graham (1928)[16] noted reductions in blood sugar levels 
and glycosuria during combination therapy of Syn and in-
sulin. However, some patients reported gastrointestinal side 
effects, mostly vomiting but there was one case of a comatose 
state (possibly severe hypoglycaemia) which lead to cessation 
of the Syn.[16]

Thomson et al. (1932) conducted a long-term study (25–
104 months) of Syn in combination with insulin in 64 dia-
betes patients and noted reductions in blood sugar levels in 
most patients at most times tested, with only mild adverse 
symptoms. The study concluded that an appropriate dose of 
Syn to optimise efficacy with minimal toxicity should usually 
be about 10 mg given three times daily following food intake 
for 3 consecutive days and no treatment on the fourth day.[35]

None of the foregoing studies recommended the use of Syn 
without insulin or in conjunction with another drug,[16, 32, 35] 
but a study by Rabinowitch (1927) found that Syn alone was 
able to replace insulin for 2–4 weeks in six of seven patients 
tested, but was not able to replace insulin long term.[34]

In these clinical studies, there was no opportunity to ex-
amine pancreatic histology and no discussion of the effects of 
Syn on pancreatic islets. In animal studies, however, the mech-
anism of action of Syn was examined in detail.

Animal Studies
A substantial number of early studies detailed the effects of 
enteral and parenteral administration of Syn on the mor-
phology of pancreatic islets and other tissues, but it must be 
borne in mind that these studies pre-date reliable methods 
for direct measurement of insulin and glucagon. The species 
examined included rabbits,[15, 23, 36] guinea pigs,[17, 37] cats,[15] 
dogs,[15, 20] birds[22, 25, 26, 38] and rodents.[14, 39, 40] The results, 
summarised in Figure 2, revealed distinct species differences 
of sensitivity to the glycaemic effects of Syn A but consistent 
evidence of alpha-cell damage, although these effects were 
sometimes tempered by evidence of extra-pancreatic toxicity.

Figure 2 Simplified scheme of the envisaged effects of synthalin A on pancreatic islets leading to depletion of alpha-cells, reversal of 
hyperglucagonaemia and lowering of blood glucose based on observations in historical literature.
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Particularly worthy of historical comment are the studies 
performed using birds and guinea pigs. Birds have a mix-
ture of dark and light pancreatic islets, the former being 
composed almost entirely of alpha cells. The importance 
of glucagon in birds is illustrated by the effect of pancrea-
tectomy which results in fatal hypoglycaemia (compared 
with fatal hyperglycaemia in mammals).[41] Consistent with 
this, injection of chickens with Syn A resulted in transient 
hyperglycaemia, possibly due to glucagon leakage associated 
with the destruction of alpha-cells, followed by glycogen de-
pletion and severe hypoglycaemia, culminating in convulsions 
and death.[26, 38, 41] This accords with studies by Östenson et al. 
in 1983 using guinea pig islets which are rich in alpha-cells.[17] 
Brief exposure of guinea pig islets to Syn A increased glu-
cagon release, accompanied by a concentration-dependent de-
crease in alpha-cell glucose oxidation, vacuolisation, necrosis 
and disintegration.

Although interesting from a mechanistic perspective the 
early experiments using non-diabetic models (with normal 
blood glucose levels) were not ideal for assessing the meta-
bolic effects of agents intended to counter hyperglycaemia. 
While confirming the ability of Syn to suppress alpha-cell 
function, they provide limited insight for application in type 
2 human diabetes which is now the main type of diabetes of 
interest for suppression of glucagon levels.

Based on the evidence summarised in Figure 2, it appears 
that an appropriate dose of Syn A can selectively disrupt islet 
alpha-cell function, leading to an initial release of glucagon 
which stimulates glycogenolysis and gluconeogenesis, which 
in turn promotes hyperglycaemia (Figure 3). More prolonged 
exposure to Syn A gives way to the gradual exhaustion of 
tissue glycogen stores and loss of functional alpha-cells, 
resulting in a lowering of blood glucose. Such an effect might 

proceed more rapidly in normal animals because glucagon will 
trigger insulin release by a direct stimulatory effect on beta-
cells as well as by potentiating the positive effects mediated 
by increased glucose itself. However, similar beta-cell actions 
in man are less certain and will depend on the level of insulin 
secretory function in type 2 and the persistence of beta-cells 
in type 1 diabetes.

New Therapies and Approaches to Counter 
Hyperglucagonaemia
Although the studies with synthalins have become submerged 
in history, the quest to suppress glucagon secretion or ac-
tion continues to be a therapeutic consideration for the con-
trol of hyperglycaemia in type 2 diabetes today, and it has 
been contemplated as a possible adjunct to insulin treatment 
for type 1 diabetes.[42, 43] Current experience with DPP-IV 
inhibitors and GLP-1 mimetic agents indicates that modest 
suppression of glucagon secretion can assist in the reduction 
of prandial glucose excursions. The mode of action of these 
agents on alpha-cell function does not appear to interrupt the 
increased secretion of glucagon at low glucose concentrations 
and does not, therefore, compromise the counter-regulatory 
response to protect against severe hypoglycaemia. Selective 
suppression of glucagon secretion or elimination of most or 
all pancreatic alpha-cells has been attempted in very few ex-
perimental studies, and as with Syn A it has proved difficult 
to avoid collateral toxicity, and as yet has not proceeded as a 
clinically viable therapeutic approach.[2]

An alternative strategy has focussed on the develop-
ment of glucagon antagonists.[44, 45] Several of these agents 
have exhibited effective glucose lowering in type 2 diabetes 
patients, including glucagon antibodies, glucagon analogues 

Figure 3 Overview of synthalin A studies across species with dose, blood glucose effects and pancreas toxicity.
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and antibodies that inhibit glucagon binding to its receptor, 
antisense oligonucleotides against receptor mRNA, and 
small molecules that interrupt glucagon receptor binding 
or intracellular receptor signalling.[44, 45] Most of these 
approaches have been cautious to minimise the risk of severe 
hypoglycaemia, but they have exposed the requirement for 
glucagon to exert actions beyond blood glucose elevation. 
For example, glucagon antagonism has frequently increased 
circulating liver enzymes and given rise to alpha-cell hyper-
plasia with escalating circulating glucagon concentrations.[44, 

45] This in turn causes a marked rebound hyperglycaemia 
if a treatment dose is missed. These side effects may chal-
lenge the ultimate use of glucagon antagonists. However, an 
emerging prospect for the future therapeutic manipulation of 
alpha-cells is their transdifferentiation into insulin-secreting 
beta-cells, and this might be achieved through pharmaceu-
tical modification of the activity of key transcription factors 
such as Pax4.[13]

Conclusion
After its discovery in the 1920s, Syn A provided a new oral 
glucose-lowering medication to supplement the use of in-
sulin and give temporary therapeutic benefits when in-
sulin could not be obtained. While selective destruction of 
glucagon-secreting alpha-cells with Syn A was not without 
some collateral toxicity, the early studies suggest that 
careful dose titration could minimise adverse effects, pos-
sibly by reducing but not eliminating the alpha-cell popu-
lation. Perhaps the lessons provided by the early studies on 
Syn A might stimulate a resurgence of interest in therapeutic 
approaches that reduce or repurpose the alpha-cell popu-
lation, at least to reverse the hyperglucagonaemias of dia-
betic states, but without compromising the vital actions of 
glucagon that prevent severe hypoglycaemia and maintain 
other metabolic functions.
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