276 research outputs found

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    No full text
    International audienceThe first measurements of skewness and kurtosis of mean transverse momentum (pT\langle p_\mathrm{T}\rangle) fluctuations are reported in Pb-Pb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV, Xe-Xe collisions at sNN\sqrt{s_\mathrm{NN}}== 5.44 TeV and pp collisions at s=5.02\sqrt{s} = 5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size dNch/dηη<0.51/3\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle_{|\eta|<0.5}^{1/3}, using charged particles with transverse momentum (pTp_\mathrm{T}) and pseudorapidity (η\eta), in the range 0.2<pT<3.00.2 < p_\mathrm{T} < 3.0 GeV/cc and η<0.8|\eta| < 0.8, respectively. In Pb-Pb and Xe-Xe collisions, positive skewness is observed in the fluctuations of pT\langle p_\mathrm{T}\rangle for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of pT\langle p_\mathrm{T}\rangle fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb-Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb--Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions

    Photoproduction of K+^{+}K^{-} pairs in ultra-peripheral collisions

    No full text
    International audienceK+^{+}K^{-} pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ(1020)\phi (1020) mesons, or directly as non-resonant K+^{+}K^{-} pairs. Measurements of K+^{+}K^{-} photoproduction probe the couplings between the ϕ(1020)\phi (1020) and charged kaons with photons and nuclear targets. We present the first measurement of coherent photoproduction of K+^{+}K^{-} pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K+^{+}K^{-} production. There is significant K+^{+}K^{-} production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<MKK<1.41.1 < M_{\rm{KK}} < 1.4 GeV/c2c^2 above the ϕ(1020)\phi (1020) resonance, for rapidity yKK<0.8|y_{\rm{KK}}|<0.8 and pT,KK<0.1p_{\rm T,KK} < 0.1 GeV/cc, the measured coherent photoproduction cross section is dσ/dy\mathrm{d}\sigma/\mathrm{d}y = 3.37 ± 0.61\pm\ 0.61 (stat.) ± 0.15\pm\ 0.15 (syst.) mb. The centre-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,nW_{\gamma \mathrm{Pb, n}} ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for ϕ(1020)\phi (1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of ϕ(1020)\phi (1020) decays, direct K+^{+}K^{-} photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+^{+}K^{-} photoproduction are presented

    Photoproduction of K+^{+}K^{-} pairs in ultra-peripheral collisions

    No full text
    International audienceK+^{+}K^{-} pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ(1020)\phi (1020) mesons, or directly as non-resonant K+^{+}K^{-} pairs. Measurements of K+^{+}K^{-} photoproduction probe the couplings between the ϕ(1020)\phi (1020) and charged kaons with photons and nuclear targets. We present the first measurement of coherent photoproduction of K+^{+}K^{-} pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K+^{+}K^{-} production. There is significant K+^{+}K^{-} production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<MKK<1.41.1 < M_{\rm{KK}} < 1.4 GeV/c2c^2 above the ϕ(1020)\phi (1020) resonance, for rapidity yKK<0.8|y_{\rm{KK}}|<0.8 and pT,KK<0.1p_{\rm T,KK} < 0.1 GeV/cc, the measured coherent photoproduction cross section is dσ/dy\mathrm{d}\sigma/\mathrm{d}y = 3.37 ± 0.61\pm\ 0.61 (stat.) ± 0.15\pm\ 0.15 (syst.) mb. The centre-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,nW_{\gamma \mathrm{Pb, n}} ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for ϕ(1020)\phi (1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of ϕ(1020)\phi (1020) decays, direct K+^{+}K^{-} photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+^{+}K^{-} photoproduction are presented

    Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p-Pb, and Pb-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/NchTR_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and NchT\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p-Pb, and Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p-Pb)

    Multiplicity dependence of charged-particle intra-jet properties in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton-proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at s\sqrt{s} = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region (η<0.9|\eta| < 0.9) using the sequential recombination anti-kTk_{\rm T} algorithm with jet resolution parameters RR = 0.2, 0.3, and 0.4 for the transverse momentum (pTp_{\rm T}) interval 5-110 GeV/cc. High-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet pTp_{\rm T} in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation functions zchz^{\rm ch} and ξch\xi^{\rm ch} are measured for different jet-pTp_{\rm T} intervals. Jet-pTp_{\rm T} independent fragmentation of leading jets is observed for wider jets except at high- and low-zchz^{\rm ch}. The observed "hump-backed plateau" structure in the ξch\xi^{\rm ch} distribution indicates suppression of low-pTp_{\rm T} particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-zchz^{\rm ch} particles accompanied by a suppression of high-zchz^{\rm ch} particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-pTp_{\rm T} jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet pTp_{\rm T}. These measurements provide important constraints to models of jet fragmentation

    Search for jet quenching effects in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV via di-jet acoplanarity

    No full text
    International audienceThe ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton-proton collisions at s\sqrt{s} = 13 TeV, using the semi-inclusive azimuthal-difference distribution Δφ\Delta\varphi of charged-particle jets recoiling from a high transverse momentum (high-pT,trigp_{\mathrm{T,trig}}) trigger hadron. Jet quenching may broaden the Δφ\Delta\varphi distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs a pT,trigp_{\mathrm{T,trig}}-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. We elucidate the origin of the broadening by comparing biases induced by HM selection in the data and simulations, and discuss its implications for the study of jet quenching in small collision systems

    Charged-particle production as a function of the relative transverse activity classifier in pp, p–Pb, and Pb–Pb collisions at the LHC

    No full text
    Measurements of charged-particle production in pp, p−Pb, and Pb−Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (ptrigT) in the range 8<ptrigT<15 GeV/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NTch/⟨NTch⟩, is used to group events according to their UE activity, where NTch is the charged-particle multiplicity per event in the transverse region and ⟨NTch⟩ is the mean value over the whole analysed sample. The energy dependence of the RT distributions in pp collisions at s√=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pT spectra as a function of RT in the three azimuthal regions in pp, p−Pb, and Pb−Pb collisions at sNN−−−√=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p−Pb)

    Exclusive four pion photoproduction in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe intense photon fluxes from relativistic nuclei provide an opportunity to study photonuclear interactions in ultraperipheral collisions. The measurement of coherently photoproduced π+ππ+π\pi^+\pi^-\pi^+\pi^- final states in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV is presented for the first time. The cross section, dσ\sigma/dyy, times the branching ratio (ρπ+π+ππ\rho\rightarrow \pi^+ \pi^+ \pi^- \pi^-) is found to be 47.8±2.3 (stat.)±7.7 (syst.)47.8\pm2.3~\rm{(stat.)}\pm7.7~\rm{(syst.)} mb in the rapidity interval y<0.5|y| < 0.5. The invariant mass distribution is not well described with a single Breit-Wigner resonance. The production of two interfering resonances, ρ(1450)\rho(1450) and ρ(1700)\rho(1700), provides a good description of the data. The values of the masses (mm) and widths (Γ\Gamma) of the resonances extracted from the fit are m1=1385±14 (stat.)±3 (syst.)m_{1}=1385\pm14~\rm{(stat.)}\pm3~\rm{(syst.)} MeV/c2c^2, Γ1=431±36 (stat.)±82 (syst.)\Gamma_{1}=431\pm36~\rm{(stat.)}\pm82~\rm{(syst.)} MeV/c2c^2, m2=1663±13 (stat.)±22 (syst.)m_{2}=1663\pm13~\rm{(stat.)}\pm22~\rm{(syst.)} MeV/c2c^2 and Γ2=357±31 (stat.)±49 (syst.)\Gamma_{2}=357 \pm31~\rm{(stat.)}\pm49~\rm{(syst.)} MeV/c2c^2, respectively. The measured cross sections times the branching ratios are compared to recent theoretical predictions

    Measurement of Λ3H{}_{\Lambda}^{3}\mathrm{H} production in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe first measurement of Λ3H_{\Lambda}^{3}\mathrm{H} and Λ3H^3_ {\overline{\Lambda}}\overline{\mathrm{H}} differential production with respect to transverse momentum and centrality in Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV is presented. The Λ3H_{\Lambda}^{3}\mathrm{H} has been reconstructed via its two-charged-body decay channel, i.e., Λ3H3He+π_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}. A Blast-Wave model fit of the pTp_{\rm T}-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the Λ3H_{\Lambda}^{3}\mathrm{H} kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of Λ3H_{\Lambda}^{3}\mathrm{H} and 3He^3\mathrm{He} is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements

    Particle production as a function of charged-particle flattenicity in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThis paper reports the first measurement of the transverse momentum (pTp_{\mathrm{T}}) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at s=13\sqrt{s}=13 TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, 2.8<η<5.12.8<\eta<5.1 and 3.7<η<1.7-3.7<\eta<-1.7. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases towards larger pTp_{\mathrm{T}} due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to pT=20p_{\mathrm{T}}=20 GeV/cc. The event selection requires at least one charged particle produced in the pseudorapidity interval η<1|\eta|<1. The measured pTp_{\mathrm{T}} distributions, average pTp_{\mathrm{T}}, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the pTp_{\mathrm{T}}-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate pTp_{\mathrm{T}} (2<pT<82<p_{\mathrm{T}}<8 GeV/cc), and approaches the vicinity of unity at higher pTp_{\mathrm{T}}. The results are qualitatively described by PYTHIA, and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator
    corecore