360 research outputs found

    Atomic oxygen durability evaluation of the flexible batten for the photovoltaic array mast on Space Station

    Get PDF
    A test program was conducted at the National Aeronautics and Space Administration's Lewis Research Center (LeRC) to evaluate the long term low Earth orbital (LEO) atomic oxygen (AO) durability of a flexible (fiberglass-epoxy composite) batten. The flexible batten is a component used to provide structural rigidity in the photovoltaic array mast on Space Station. The mast is used to support and articulate the photovoltaic array, therefore, the flexible batten must be preloaded for the 15 year lifetime of an array blanket. Development hardware and composite materials were evaluated in ground testing facilities for AO durability and dynamic retraction-deployment cyclic loading representative of expected full life in-space application. The CV1144 silicone (AO protective) coating was determined to provide adequate protection against AO degradation of the composite material and provided fiber containment, thus the structural integrity of the flexible batten was maintained. Both silicone coated and uncoated flexible battens maintained load carrying capabilities. Results of the testing did indicate that the CV1144 silicone protective coating was oxidized by AO reactions to form a brittle glassy (SiO2) skin that formed cracking patterns on all sides of the coated samples. The cracking was observed in samples that were mechanically stressed as well as samples in non-stressed conditions. The oxidized silicon was observed to randomly spall in small localized areas, on the flexible battens that underwent retraction-deployment cycling. Some darkening of the silicon, attributed to vacuum ultraviolet (VUV) radiation, was observed

    IN-SYNC. V. Stellar kinematics and dynamics in the Orion A Molecular Cloud

    Full text link
    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of 2700\sim2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (vrv_r). The young stellar population remains kinematically associated with the molecular gas, following a 10kms1\sim10\:{\rm{km\:s}}^{-1} gradient along filament. However, near the center of the region, the vrv_r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of co-located stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion σv\sigma_v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for on-going expansion, from a vrv_r--extinction correlation. In the southern filament, σv\sigma_v is 2\sim2--33 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar sub-populations, detached from the gas. On the contrary, σv\sigma_v decreases towards L1641S, where the population is again in agreement with a virial state.Comment: 14 pages, 13 figures, ApJ accepte

    Multiwavelength Vertical Structure in the AU Mic Debris Disk: Characterizing the Collisional Cascade

    Get PDF
    Debris disks are scaled-up analogs of the Kuiper Belt in which dust is generated by collisions between planetesimals. In the “collisional cascade” model of debris disks, dust lost to radiation pressure and winds is constantly replenished by grinding collisions between planetesimals. The model assumes that collisions are destructive and involve large velocities; this assumption has not been tested beyond our Solar System. We present 0. 0025 (≈2.4 au) resolution observations of the λ = 450 µm dust continuum emission from the debris disk around the nearby M dwarf AU Microscopii with the Atacama Large Millimeter/submillimeter Array. We use parametric models to describe the disk structure, and an MCMC algorithm to explore the posterior distributions of the model parameters; we fit the structure of the disk to both our data and archival λ = 1.3 mm data (Daley et al. 2019), from which we obtain two aspect ratio measurements at 1.3 mm (h1300 = 0.025+0.008 −0.002) and at 450 µm (h450 = 0.019+0.006 −0.001), as well as the grain size distribution index q = 3.03 ± 0.02. Contextualizing our aspect ratio measurements within the modeling framework laid out in Pan & Schlichting (2012), we derive a power law index of velocity dispersion as a function of grain size p = 0.28 ± 0.06 for the AU Mic debris disk. This result implies that smaller bodies are more easily disrupted than larger bodies by collisions, which is inconsistent with the strength regime usually assumed for such small bodies. Possible explanations for this discrepancy are discussed
    corecore