396 research outputs found
Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"
Point Projection Microscopy (PPM) is used to image suspended graphene using
low-energy electrons (100-200eV). Because of the low energies used, the
graphene is neither damaged or contaminated by the electron beam. The
transparency of graphene is measured to be 74%, equivalent to electron
transmission through a sheet as thick as twice the covalent radius of
sp^2-bonded carbon. Also observed is rippling in the structure of the suspended
graphene, with a wavelength of approximately 26 nm. The interference of the
electron beam due to the diffraction off the edge of a graphene knife edge is
observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms
for the electron emitter. It is demonstrated that graphene can be used as both
anode and substrate in PPM in order to avoid distortions due to strong field
gradients around nano-scale objects. Graphene can be used to image objects
suspended on the sheet using PPM, and in the future, electron holography
Buckling Thin Disks and Ribbons with Non-Euclidean Metrics
I consider the problem of a thin membrane on which a metric has been
prescribed, for example by lithographically controlling the local swelling
properties of a polymer thin film. While any amount of swelling can be
accommodated locally, geometry prohibits the existence of a global strain-free
configuration. To study this geometrical frustration, I introduce a
perturbative approach. I compute the optimal shape of an annular, thin ribbon
as a function of its width. The topological constraint of closing the ribbon
determines a relationship between the mean curvature and number of wrinkles
that prevents a complete relaxation of the compression strain induced by
swelling and buckles the ribbon out of the plane. These results are then
applied to thin, buckled disks, where the expansion works surprisingly well. I
identify a critical radius above which the disk in-plane strain cannot be
relaxed completely.Comment: 6 pages, 5 figures; lengthened to clarify previously confusing
issues. To appear in EP
Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source
Resonance fluorescence in the Heitler regime provides access to single
photons with coherence well beyond the Fourier transform limit of the
transition, and holds the promise to circumvent environment-induced dephasing
common to all solid-state systems. Here we demonstrate that the coherently
generated single photons from a single self-assembled InAs quantum dot display
mutual coherence with the excitation laser on a timescale exceeding 3 seconds.
Exploiting this degree of mutual coherence we synthesize near-arbitrary
coherent photon waveforms by shaping the excitation laser field. In contrast to
post-emission filtering, our technique avoids both photon loss and degradation
of the single photon nature for all synthesized waveforms. By engineering
pulsed waveforms of single photons, we further demonstrate that separate
photons generated coherently by the same laser field are fundamentally
indistinguishable, lending themselves to creation of distant entanglement
through quantum interference.Comment: Additional data and analysis in PDF format is available for download
at the publications section of our website:
http://www.amop.phy.cam.ac.uk/amop-ma
Genome-wide copy number alterations in subtypes of invasive breast cancers in young white and African American women.
Genomic copy number alterations (CNA) are common in breast cancer. Identifying characteristic CNAs associated with specific breast cancer subtypes is a critical step in defining potential mechanisms of disease initiation and progression. We used genome-wide array comparative genomic hybridization to identify distinctive CNAs in breast cancer subtypes from 259 young (diagnosed with breast cancer at 40%) for TN breast tumors at 10q, 11p, 11q, 16q, 20p, and 20q. In addition, we report CNAs that differ in frequency between TN breast tumors of AA and CA women. This is of particular relevance because TN breast cancer is associated with higher mortality and young AA women have higher rates of TN breast tumors compared to CA women. These data support the possibility that higher overall frequency of genomic alteration events as well as specific focal CNAs in TN breast tumors might contribute in part to the poor breast cancer prognosis for young AA women
Electro-elastic tuning of single particles in individual self-assembled quantum dots
We investigate the effect of uniaxial stress on InGaAs quantum dots in a
charge tunable device. Using Coulomb blockade and photoluminescence, we observe
that significant tuning of single particle energies (~ -0.5 meV/MPa) leads to
variable tuning of exciton energies (+18 to -0.9 micro-eV/MPa) under tensile
stress. Modest tuning of the permanent dipole, Coulomb interaction and
fine-structure splitting energies is also measured. We exploit the variable
exciton response to tune multiple quantum dots on the same chip into resonance.Comment: 16 pages, 4 figures, 1 table. Final versio
Planets Around Low-Mass Stars (PALMS). V. Age-Dating Low-Mass Companions to Members and Interlopers of Young Moving Groups
Copyright © 2015. The American Astronomical Society. All rights reserved.We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7-M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8-120 Myr) in the literature. The inferred masses of the companions (~10-100 Mjup) are highly sensitive to the ages of the primary stars so we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. 2MASS J02155892-0929121 C is a new M7 substellar companion (40-60 Mjup) with clear spectroscopic signs of low gravity and hence youth. The primary, possibly a member of the ~40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (1 Gyr) tidally-locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest-known member of the Pleiades.NASANSFMt. Cuba Astronomical FoundationSamuel OschinAlfred P. Sloan Foundatio
Engineering of quantum dot photon sources via electro-elastic fields
The possibility to generate and manipulate non-classical light using the
tools of mature semiconductor technology carries great promise for the
implementation of quantum communication science. This is indeed one of the main
driving forces behind ongoing research on the study of semiconductor quantum
dots. Often referred to as artificial atoms, quantum dots can generate single
and entangled photons on demand and, unlike their natural counterpart, can be
easily integrated into well-established optoelectronic devices. However, the
inherent random nature of the quantum dot growth processes results in a lack of
control of their emission properties. This represents a major roadblock towards
the exploitation of these quantum emitters in the foreseen applications. This
chapter describes a novel class of quantum dot devices that uses the combined
action of strain and electric fields to reshape the emission properties of
single quantum dots. The resulting electro-elastic fields allow for control of
emission and binding energies, charge states, and energy level splittings and
are suitable to correct for the quantum dot structural asymmetries that usually
prevent these semiconductor nanostructures from emitting polarization-entangled
photons. Key experiments in this field are presented and future directions are
discussed.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis
Background More than 10 years have elapsed since human papillomavirus (HPV) vaccination was implemented. We did a systematic review and meta-analysis of the population-level impact of vaccinating girls and women against human papillomavirus on HPV infections, anogenital wart diagnoses, and cervical intraepithelial neoplasia grade 2+ (CIN2+)to summarise the most recent evidence about the effectiveness of HPV vaccines in real-world settings and to quantify the impact of multiple age-cohort vaccination.Methods In this updated systematic review and meta-analysis, we used the same search strategy as in our previous paper. We searched MEDLINE and Embase for studies published between Feb 1, 2014, and Oct 11, 2018. Studies were eligible if they compared the frequency (prevalence or incidence) of at least one HPV-related endpoint (genital HPV infections, anogenital wart diagnoses, or histologically confirmed CIN2+) between pre-vaccination and post-vaccination periods among the general population and if they used the same population sources and recruitment methods before and after vaccination. Our primary assessment was the relative risk (RR) comparing the frequency (prevalence or incidence) of HPV-related endpoints between the pre-vaccination and post-vaccination periods. We stratified all analyses by sex, age, and years since introduction of HPV vaccination. We used random-effects models to estimate pooled relative risks.Findings We identified 1702 potentially eligible articles for this systematic review and meta-analysis, and included 65 articles in 14 high-income countries: 23 for HPV infection, 29 for anogenital warts, and 13 for CIN2+.After 5\u20138 years of vaccination, the prevalence of HPV 16 and 18 decreased significantly by 83% (RR 0\ub717, 95% CI 0\ub711\u20130\ub725) among girls aged 13\u201319 years, and decreased significantly by 66% (RR 0\ub734, 95% CI 0\ub723\u20130\ub749) among women aged 20\u201324 years. The prevalence of HPV 31, 33, and 45 decreased significantly by 54% (RR 0\ub746, 95% CI 0\ub733\u20130\ub766) among girls aged 13\u201319 years. Anogenital wart diagnoses decreased significantly by 67% (RR 0\ub733, 95% CI 0\ub724\u20130\ub746) among girls aged 15\u201319 years, decreased significantly by 54% (RR 0\ub746, 95% CI 0.36\u20130.60) among women aged 20\u201324 years, and decreased significantly by 31% (RR 0\ub769, 95% CI 0\ub753\u20130\ub789) among women aged 25\u201329 years. Among boys aged 15\u201319 years anogenital wart diagnoses decreased significantly by 48% (RR 0\ub752, 95% CI 0\ub737\u20130\ub775) and among men aged 20\u201324 years they decreased significantly by 32% (RR 0\ub768, 95% CI 0\ub747\u20130\ub798). After 5\u20139 years of vaccination, CIN2+ decreased significantly by 51% (RR 0\ub749, 95% CI 0\ub742\u20130\ub758) among screened girls aged 15\u201319 years and decreased significantly by 31% (RR 0\ub769, 95% CI 0\ub757\u20130\ub784) among women aged 20\u201324 years.Interpretation This updated systematic review and meta-analysis includes data from 60 million individuals and up to 8 years of post-vaccination follow-up. Our results show compelling evidence of the substantial impact of HPV vaccination programmes on HPV infections and CIN2+ among girls and women, and on anogenital warts diagnoses among girls, women, boys, and men. Additionally, programmes with multi-cohort vaccination and high vaccination coverage had a greater direct impact and herd effects
Estimating the predictability of an oceanic time series using linear and nonlinear methods
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08002, doi:10.1029/2003JC002148.This study establishes a series of tests to examine the relative utility of nonlinear time series analysis for oceanic data. The performance of linear autoregressive models and nonlinear delay coordinate embedding methods are compared for three numerical and two observational data sets. The two observational data sets are (1) an hourly near-bottom pressure time series from the South Atlantic Bight and (2) an hourly current-meter time series from the Middle Atlantic Bight (MAB). The nonlinear methods give significantly better predictions than the linear methods when the underlying dynamics have low dimensionality. When the dimensionality is high, the utility of nonlinear methods is limited by the length and quality of the time series. On the application side we mainly focus on the MAB data set. We find that the slope velocities are much less predictable than shelf velocities. Predictability on the slope after several hours is no better than the statistical mean. On the other hand, significant predictability of shelf velocities can be obtained for up to at least 12 hours.This research was supported by
Office of Naval Research grants N00014-01-1-0260, N00014-92-J-1481,
and N10014-99-1-0258
- …