30 research outputs found

    Standing waves of the complex Ginzburg-Landau equation

    Full text link
    We prove the existence of nontrivial standing wave solutions of the complex Ginzburg-Landau equation ϕt=eiθΔϕ+eiγϕαϕ\phi_t = e^{i\theta} \Delta \phi + e^{i\gamma} |\phi |^\alpha \phi with periodic boundary conditions. Our result includes all values of θ\theta and γ\gamma for which cosθcosγ>0\cos \theta \cos \gamma >0, but requires that α>0\alpha >0 be sufficiently small

    A Fujita-type blowup result and low energy scattering for a nonlinear Schr\"o\-din\-ger equation

    Full text link
    In this paper we consider the nonlinear Schr\"o\-din\-ger equation iut+Δu+κuαu=0i u_t +\Delta u +\kappa |u|^\alpha u=0. We prove that if α<2N\alpha <\frac {2} {N} and κ<0\Im \kappa <0, then every nontrivial H1H^1-solution blows up in finite or infinite time. In the case α>2N\alpha >\frac {2} {N} and κC\kappa \in {\mathbb C}, we improve the existing low energy scattering results in dimensions N7N\ge 7. More precisely, we prove that if 8N+N2+16N<α4N \frac {8} {N + \sqrt{ N^2 +16N }} < \alpha \le \frac {4} {N} , then small data give rise to global, scattering solutions in H1H^1

    Sign-changing self-similar solutions of the nonlinear heat equation with positive initial value

    Full text link
    We consider the nonlinear heat equation utΔu=uαuu_t - \Delta u = |u|^\alpha u on RN{\mathbb R}^N, where α>0\alpha >0 and N1N\ge 1. We prove that in the range 000 0, there exist infinitely many sign-changing, self-similar solutions to the Cauchy problem with initial value u0(x)=μx2αu_0 (x)= \mu |x|^{-\frac {2} {\alpha }}. The construction is based on the analysis of the related inverted profile equation. In particular, we construct (sign-changing) self-similar solutions for positive initial values for which it is known that there does not exist any local, nonnegative solution

    Finite-time blowup for a complex Ginzburg-Landau equation

    Get PDF
    We prove that negative energy solutions of the complex Ginzburg-Landau equation eiθut=Δu+uαue^{-i\theta} u_t = \Delta u+ |u|^{\alpha} u blow up in finite time, where \alpha >0 and \pi /2<\theta <\pi /2. For a fixed initial value u(0)u(0), we obtain estimates of the blow-up time TmaxθT_{max}^\theta as θ±π/2\theta \to \pm \pi /2 . It turns out that TmaxθT_{max}^\theta stays bounded (respectively, goes to infinity) as θ±π/2\theta \to \pm \pi /2 in the case where the solution of the limiting nonlinear Schr\"odinger equation blows up in finite time (respectively, is global).Comment: 22 page

    On semilinear parabolic problems with non-Lipschitz nonlinearities

    No full text

    Blowup stability of solutions of the nonlinear heat equation with a large life span

    Get PDF
    AbstractWe study the Cauchy problem for the nonlinear heat equation ut-▵u=|u|p-1u in RN. The initial data is of the form u0=λϕ, where ϕ∈C0(RN) is fixed and λ>0. We first take 1<p<pf, where pf is the Fujita critical exponent, and ϕ∈C0(RN)∩L1(RN) with nonzero mean. We show that u(t) blows up for λ small, extending the H. Fujita blowup result for sign-changing solutions. Next, we consider 1<p<ps, where ps is the Sobolev critical exponent, and ϕ(x) decaying as |x|-σ at infinity, where p<1+2/σ. We also prove that u(t) blows up when λ is small, extending a result of T. Lee and W. Ni. For both cases, the solution enjoys some stable blowup properties. For example, there is single point blowup even if ϕ is not radial

    Sharp conditions for blowup of solutions of a chemotactical model for two species in R2

    Get PDF
    AbstractWe consider a model system of Keller–Segel type for the evolution of two species in the whole space R2 which are driven by chemotaxis and diffusion. It is well known that this problem admits global and blowup solutions. We show that there exists a sharp condition which allows to distinguish global and blowup solutions in the radially symmetric case. More precisely, let m∞ and n∞ be the total masses of the species. Then there exists a critical curve γ in the m∞−n∞ plane such that the solution blows up if and only if (m∞,n∞) is above γ. This gives an answer to a question raised by Conca et al. (2011) in [8]. We also study the asymptotic behaviour of global solutions in the subcritical case, showing that they are asymptotically self-similar
    corecore