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a b s t r a c t

We consider a model system of Keller–Segel type for the evolution of two species in the
whole space R2 which are driven by chemotaxis and diffusion. It is well known that this
problem admits global and blowup solutions. We show that there exists a sharp condition
which allows to distinguish global and blowup solutions in the radially symmetric case.
More precisely, letm∞ and n∞ be the totalmasses of the species. Then there exists a critical
curve γ in the m∞ − n∞ plane such that the solution blows up if and only if (m∞, n∞) is
above γ . This gives an answer to a question raised by Conca et al. (2011) in [8]. We also
study the asymptotic behaviour of global solutions in the subcritical case, showing that
they are asymptotically self-similar.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this work we study the positive solutions w(t, r) = (m(t, r), n(t, r)) of the system
∂tm − 4r∂rrm −

χ1

π
(m + n)∂rm = 0 in (0, T ) × (0, ∞),

∂tn − 4r∂rrn −
χ2

π
(m + n)∂rn = 0 in (0, T ) × (0, ∞),

w(t, ∞) = w∞ in (0, T ),
w(0, r) = w0(r) in (0, ∞),

(1.1)

where χ1 > 0, χ2 > 0, w0 ∈ (C(0, ∞))2 is nonnegative, nondecreasing and satisfies w0(∞) = w∞ ∈ R2. Here,
w(t, ∞) = limr→∞ w(t, r) and w0(∞) = limr→∞ w0(r). For radially symmetric solutions system (1.1) is derived from
the following Keller–Segel elliptic–parabolic type problem for two species in R2

ut − ∆u + χ1∇ · (u∇c) = 0 in (0, T ) × R2,

vt − ∆v + χ2∇ · (v∇c) = 0 in (0, T ) × R2,

−∆c = u + v in (0, T ) × R2,

u(0) = u0 in R2,

v(0) = v0 in R2.

(1.2)

Here, u, v are the mass densities of the species, c is the chemical concentration and χ1, χ2 represent the intensities of
chemotactical attraction of the species. A formal computation shows that when u0 and v0 are nonnegative integrable
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functions such that
R2

u0(x) dx = m∞,


R2

v0(x) dx = n∞, (1.3)

then the total mass is preserved, i.e.,
R2

u(t, x) dx = m∞,


R2

v(t, x) dx = n∞ (1.4)

for t > 0. System (1.1) is obtained from (1.2) by assuming (1.4) and setting

m(t, r) =


B(0,

√
r)
u(t, x) dx, n(t, r) =


B(0,

√
r)

v(t, x) dx; (1.5)

see [1,2] for the corresponding case of one organism.
Note that the diffusion coefficients in (1.1) degenerate at r = 0. As a consequence, no left hand boundary condition

is imposed in (1.1). The right hand boundary condition, i.e., the condition at infinity is also nonstandard. To treat those
difficulties we proceed as in [3], considering a regularized problem defined over a finite interval (0, R) and replacing the
diffusion coefficients by 4(r + δ), where δ > 0. Letting δ → 0 and R → ∞ we prove the existence of a solution of
(1.1) which is defined for all t > 0. A solution obtained by this regularization procedure will be called a r-solution. This
construction yields the following result.

Theorem 1.1. Suppose w0 ∈ (C(0, ∞))2 is a nonnegative nondecreasing function such that w(0) = 0 and w0(∞) = w∞.
Then there exists a r-solution w ∈ (C1,2((0, ∞) × (0, ∞)))2 of (1.1) such that

w(t, r) → w0(r) (1.6)

as t → 0 uniformly in [ρ, ∞) for all ρ > 0 and such that

w(t, r) → w∞ (1.7)

as r → ∞ uniformly in t ∈ [0, T ], for all T > 0. It holds that w(t, r) is nonnegative, nondecreasing in r. Moreover, the following
comparison principle takes place. Let w̃0 ≥ w0 and supposew is a r-solution such that w(0) = w0. Then there exists a r-solution
w̃ ≥ w such that w̃(0) = w̃0.

Assume further that there exists C0 > 0 such that

w(t, r) ≤ C0r. (1.8)

Then there exist T > 0 and C(T ) > 0 such that

w(t, r) ≤ C(T )r (1.9)

for all t ≤ T , r > 0.
Finally, uniqueness holds in the class of solutions w ∈ (C1,2((0, T ) × (0, ∞)))2 satisfying (1.6), (1.7) and (1.9) for some

T > 0.

As observed above r-solutions are defined for all t > 0. However, due to the degeneracy at the origin, if (1.8) holds (1.9)
may break down in finite time. In fact, it may happen that w(t, 0) = limr→0 w(t, r) ceases to be equal to zero in finite time.
This corresponds to the appearance of a Dirac mass at r = 0 in (1.2); see (1.4). We will say that a r-solution w is global if
w(0) = 0 for a.a. t > 0, otherwise it is a blowup solution. In this article we give a sharp criterion to distinguish global from
blowup r-solutions. Before presenting this characterization let us discuss some previous results.

In [4,5] the general (nonradial) case for one organism is considered. The authors use a sharp logarithmic Hardy–Sobolev
inequality to prove that ifχm∞ < 8π then aweak global solution u(t) ∈ L1(R2)may be defined. Hereχ is the chemotactical
intensity of the species. Assuming further that the second moment


|x|2u0(x) dx is finite, they also show that in the

supercritical case χm∞ > 8π all solutions blow up. Further results concerning this and analogous models may be found
in [6]. The symmetric radial case is treated in [3], where the mass variable m(t) is considered. The authors show that the
solutions are global and asymptotically self-similar in the subcritical region χm∞ < 8π . They also show that the critical
case χm∞ = 8π corresponds to global solutions and provide an interesting analysis of the asymptotic behaviour of the
solutions. Analogous results have been previously described in [1], where radial solutions in a disc of R2 were considered.
The supercritical case χm∞ > 8π has been studied in [7], where it is shown that the corresponding radially symmetric
solutions blow up.

The existence of global and of blowup solutions for two species is discussed in [8], where the authors study system (1.2).
To present their main results let us define

T (w∞) = m∞ + n∞ −
8π

max{χ1, χ2}
, (1.10)
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Fig. 1. The level curves Q = 0 and P = 0.

P(w∞) = 8π

m∞

χ1
+

n∞

χ2


− (m∞ + n∞)2, (1.11)

Q (w∞) = 8π − max{χ1 m, χ2 n}, (1.12)

and denote

P+
= {w∞ ∈ R+

× R+, P(w∞) ≥ 0}, (1.13)

P−
= {w∞ ∈ R+

× R+, P(w∞) < 0}, (1.14)

P̊+
= {w∞ ∈ R+

× R+, P(w∞) > 0}, (1.15)

P0 = {w∞ ∈ R+
× R+, P(w∞) = 0}; (1.16)

see Fig. 1. Analogous notations stand for T and Q . Using as in [5] the logarithmic Hardy–Sobolev inequality they prove that
solutions are global whenever w∞ ∈ T− while blowup occurs when u0 and v0 have finite second moments and w∞ ∈ P−.
Moreover, in the radially symmetric case they show that blowup also occurs when w∞ ∈ Q−. These results left open the
determination of the nature of the solutions in the region P+

∩Q+ in the general case, and P+
∩Q+

∩T+ for radial solutions.
In this work we give an answer to this question in the radial case showing that the two curves Q (w∞) = 0, P(w∞) = 0 are
in fact critical. More precisely, we have the following.

Theorem 1.2. Any r-solution w of (1.1) blows up when either

w∞ ∈ P− (1.17)

or

w∞ ∈ Q−. (1.18)

Theorem 1.3. Suppose (1.8) holds. Assume further that

w∞ ∈ P+ (1.19)

and

w∞ ∈ Q+. (1.20)

Then any r-solution of (1.1) is global.

We next study the long time behaviour of global solutions for which w∞ ∈ P̊+
∩Q+. We first show there exists a unique

self-similar solution ws such that ws(t, 0) = 0 and w(t, ∞) = w∞ for all t > 0. By self-similar we mean ws satisfying
ws(kt, kr) = ws(t, r) for all k > 0. Then we prove that ws describes the long-time behaviour of all solutions such that
w(t, ∞) = w∞, as stated in Theorem 1.4 below. Analogous asymptotic behaviour holds for the case of one species; see [5]
for the general case and [3] for radially symmetric solutions.

Theorem 1.4. Let w∞ ∈ P̊+
∩Q+. Then there exists a unique self-similar solutionws such that ws(t, 0) = 0 andw(t, ∞) = w∞

for all t > 0.
Given w0 satisfying (1.8) and such that w0(∞) = w∞, there exists a unique global solution w(t) of (1.1). It holds that

lim
t→∞

∥w(t) − ws(t)∥∞ = 0. (1.21)
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It is interesting to interpret the above results by looking at the stationary solutions of (1.1). They may be obtained using
the connection between (1.1) and the so-called Liouville problem for systems. In fact, an appropriate change of variables
transforms a solution of the Liouville system into a stationary solution of (1.1). Necessary and sufficient conditions for the
existence of solutions of the Liouville problem were given in [9]. Translating those conditions to the present problem we
see that stationary solutions lie in the critical region P0 ∩ Q+. In the subcritical region solutions are trapped by stationary
solutions and cannot blow up. A similar picture holds true in the case of a chemotactic system of multi-components in
a bounded domain of R2; see [10] where a model for a general number of components and for the general non-radially
symmetric case is considered. The author shows that the region P̊+

∩ Q̊+ corresponds to global solutions, which converge
to some stationary solution. A similar picture also holds for the one species problem, where stationary solutions lie in the
critical regionm∞ = 8π/χ .

The proofs of Theorems 1.2 and 1.3 rely on a comparison principle and this is why they are restricted to r-solutions. Note
however that when w∞ ∈ P̊+

∩ Q+ the solution is unique; see Theorem 1.4. We finally remark that asymptotic self-similar
behaviour takes places in the subcritical region P̊+

∩ Q+ and also in the part of the critical region P+
∩ {w∞, R(w∞) = 0}.

The stationary solutions lie in the remaining part of the critical region, Q̊+
∩ {w∞, P(w∞) = 0}. Thus, we cannot expect the

same asymptotically self-similar behaviour there.
In Section 2we construct the r-solutions and prove Theorem 1.1. In Section 3we study the stationary solutions of (1.1). In

Section 4we treat the supercritical case and showTheorem1.2. The existence of global solutions in the critical and subcritical
cases is studied in Section 4. Finally, in Section 5we show the existence of self-similar solutions and describe the asymptotic
self-similar behaviour of global solutions corresponding to the subcritical case and part of the critical case.

2. Existence and uniqueness

Wewill nowdiscuss the existence and uniqueness of solutions of (1.1). To this endwe introduce the following regularized
boundary value problem. Given δ > 0 and R > 0 find w(t, r) = (m(t, r), n(t, r)) such that

∂tm − 4(r + δ)∂rrm =
χ1

π
(m + n)∂rm,

∂tn − 4(r + δ)∂rrn =
χ2

π
(m + n)∂rn,

w(0, r) = w0(r),
w(t, 0) = 0,
w(t, R) = w0(R).

(2.1)

We present a well-posedness result concerning (2.1).

Lemma 2.1. Let w0 ∈ X := (C0([0, R]))2 be nondecreasing,w0(0) = 0. Then there exists a unique solutionw ∈ C([0, ∞); X)∩
(C1,2((0, ∞) × (0, R)))2 of (2.1) which is nondecreasing for all t > 0.

Proof. The existence of a global solution w(t) for t > 0 follows from a standard fixed-point argument and usual estimates.
For two such solutions we also get

sup
t<T

∥w1(t) − w2(t)∥∞ ≤ C(T )∥w1(0) − w2(0)∥∞, (2.2)

from which uniqueness follows. We will now show that the solution preserves monotonicity. Suppose first that w0 ∈

(C1([0, R]))2. Then µ = ∂rm and ν = ∂rn satisfy

∂tµ − 4∂r((r + δ)∂rµ) =
χ1

π
∂r((m + n)µ),

∂tν − 4∂r((r + δ)∂rν) =
χ2

π
∂r((m + n)ν),

∂rµ(t, 0) = 0,
∂rν(t, 0) = 0,
(R + δ)∂rµ(t, R) +

χ1

π
(m0(R) + n0(R))µ(R) = 0,

(R + δ)∂rν(t, R) +
χ2

π
(m0(R) + n0(R))ν(R) = 0,

(2.3)

with (µ(t), ν(t)) → (m′

0, n
′

0) uniformly as t → 0. (This is a consequence of the fact that w0 = 0 and of parabolic regular-
ization.)

Multiplying the first equation of (2.3) by µ− and integrating over (0, R) we get

|µ−
|
2
+ 4δ

 R

0
|∂rµ

−
|
2 dr ≤ C

 R

0
|µ−

||∂rµ
−
| dr.
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Noting that µ−(0) = 0, it follows from Hölder, Young, Gronwall’s inequalities that µ−(t) = 0 for t > 0. Thus, m(t) is
nondecreasing. We get analogously that n(t) is nondecreasing. Consider now w0 ∈ C0 nondecreasing and let {wn

0}n∈N be a
sequence of C1 nondecreasing functions converging uniformly to w0 and such that wn

0(0) = 0, wn
0(R) = w0(R). Then the

corresponding solution wn(t) wn
0 is nondecreasing for each t > 0. Using (2.2), we conclude that w(t) is nondecreasing. �

Lemma 2.2. Let w0 ∈ X be nondecreasing and such that w0(0) = 0. Given T > 0 there exists C(R, T ) independent of δ such
that  T

0

 R

0
r|w(t)|2 dr dt +

 T

0
∥∂tw∥

2
H−1(0,R) dt ≤ C(R, T ). (2.4)

Proof. We recall that m̃ = m − m0(R)r/R satisfy

∂tm̃ − 4(r + δ)∂rrm̃ −
χ1

π
(m + n)(∂rm̃ + m0(R)/R) = 0. (2.5)

Hence,

1
2

d
dt

 R

0
|m̃|

2 dr + 4
 R

0
(r + δ)|∂rm̃|

2 dr +
χ1

2π

 R

0
(∂rm + ∂rn)|m̃|

2 dr

−
χ1m0(R)

Rπ

 R

0
(m + n)m̃ dr = 0. (2.6)

Note that ∂rm + ∂rn ≥ 0,m(t, r) ≤ m0(R), n(t, r) ≤ n0(R) and |m̃|∞ ≤ 2m0(R). Thus

1
2

d
dt

 R

0
|m̃|

2 dr + 4
 R

0
r|∂rm̃|

2 dr ≤ 2m0(R)2(m0(R) + n0(R)). (2.7)

We conclude from (2.7), and an analogous estimate for n, that T

0

 R

0
r(|∂rm|

2
+ |∂rn|2) dr dt ≤ C(R, T ). (2.8)

Next, multiplying (2.1) by ϕ ∈ H1
0 (0, R) we have R

0
∂tmϕ dr + 4

 R

0
r∂rmϕ′ dr + 4

 R

0
∂rmϕ dr =

χ1

π

 R

0
(m + n)∂rmϕ dr. (2.9)

Using that |ϕ(r)| ≤
√
r∥ϕ′

∥2 and Hölder’s inequality we obtain C(R) > 0 such that R

0


r∂rm|ϕ′

| + ∂rm|ϕ| + (m + n)∂rm|ϕ|

dr ≤ C(R)∥ϕ′

∥2

 R

0
r|∂rm|

2 dr
1/2

. (2.10)

The bound for ∥∂tm∥H−1 in (2.4) follows from (2.8)–(2.10). Analogous arguments give the desired estimate for ∥∂tn∥H−1 . �

The following comparison principle holds.

Lemma 2.3. Let w0 ∈ X be nondecreasing, with w0 = 0 and let w ∈ (C2,1((0, ∞) × (0, R)))2 ∩ (C([0, ∞) × [0, R]))2 be a
supersolution of (2.1), i.e., it holds that

∂tw + Aw ≥ F(w),
w(0, r) ≥ w0(r),
w(t, 0) ≥ 0,
w(t, R) ≥ w0(R).

(2.11)

Then w ≥ w.

Proof. Let w = (m1, n1) and define wj
= (mj, nj) recursively for j ≥ 2 by

∂tmj
− 4(r + δ)∂rrmj

−
χ1

π
(mj−1

+ nj−1)∂rmj
= 0,

∂tnj
− 4(r + δ)∂rrnj

−
χ2

π
(mj−1

+ nj−1)∂rnj
= 0,

wj(0, r) = w0(r),
wj(t, 0) = 0,
w(t, R) = w0(R).

(2.12)
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It follows from the maximum principle for parabolic equations that wj is a supersolution of (2.1), with wj(t) nondecreasing
in r and nonincreasing in j for all t > 0. Thus wj

↘ w as j → ∞. Since w ≥ wj for all j so that w ≥ w. �

We now prove the existence and uniqueness result concerning the r-solutions of (1.1).

Proof of Theorem 1.1. We first show the existence of a solution. Given k ∈ N call wk the solution of (2.1) corresponding to
δ = 1/k and R = k. It follows from Lemma 2.3 that wk ≤ w∞ for all k.

Extend wk(r) = wk(R) for r > R. Using parabolic regularity and standard diagonal arguments, upon passing to a
subsequence, we may write that wk → w as j → ∞ uniformly in [t1, t2] × [0, R], for all 0 < t1 < t2 < T , R > 0, for
some function w. Clearly, w(t) is nondecreasing, 0 ≤ w ≤ w∞ and w solves the partial differential equations of (1.1).

To study the behaviour of w(t) for small times, we use (2.4) to get

∥wk(t) − wk(s)∥H−1 ≤

 t

s
∥∂tw∥H−1 dt ≤ C(R, T̃ )(t − s)1/2

for all 0 ≤ s ≤ t ≤ T̃ < T and all k. Hence, {wk} is equicontinuous and equibounded in H−1(0, R) for all R > 0, so that
w ∈ C([0, T̃ ],H−1(0, R)) with w(0) = w0. Moreover, (2.4) also shows that {wk} is bounded in L2((0, T̃ );H1(ρ, R)) for each
0 < ρ < R, with {∂twk} bounded in L2((0, T̃ );H−1(0, R)). Thus w ∈ C([0, T̃ ]; L2(ρ, R)) and since w ≤ w, we conclude that
w ∈ C([0, T̃ ]; L2(0, R)) for all R > 0. Finally, interior estimates for parabolic equations ensure that

w ∈ C([0, T̃ ] × [ρ, R]) (2.13)

for all 0 < ρ < R.
We next prove thatw(t, r) → w∞ as r → ∞ for all t > 0. Given ε > 0, definem(t, r) = (m∞ −ε)


1 − C(t)(1 + r)−1


,

where C(t) = Ae4t , A > 0. A straightforward computation shows that for δk < 1

∂tm − 4∂r((r + δk)∂rm) = −4C(t)(m∞ − ε)(1 + r)−3((1 + r)2 − 2(r + δk) + 1 + r)

≤ 0 ≤ ∂tmk − 4(r + δk)∂rrmk. (2.14)

Take now ρ > 0 such that m0(r) > m(∞) − ε for r > ρ. Then m0(r) > m(t, r) for r > ρ and t > 0. We choose A large
enough so thatm0(r) > m(t, r) for r ≤ ρ. In this way, for all r > 0

m0(r) > m(0, r).

In particular for t > 0

0 > m(0, 0) > m(t, 0).

Moreover, for Rk > ρ,

mk(t, Rk) = m0(Rk) > m(∞) − δ > m(t, Rk). (2.15)

It follows from (2.14)–(2.15) that mk(t, r) ≥ m(t, r) for all t > 0, r ∈ [0, Rk) and k large enough. Taking k → ∞, we get
thatm ≥ m. Letting ε → 0 and arguing analogously for n(t) we conclude that given T > 0 there exists C(T ) > 0 such that

m∞ − m(t, r) + n∞ − n(t, r) ≤ C(T )(1 + r)−1 (2.16)

for all t ≤ T . Hence, (2.13) and (2.16) imply that w(t) → w0 as t → 0 uniformly in [ρ, ∞) for all ρ > 0 showing (1.6).
Furthermore, (2.16) also yields (1.6).

The solutions constructed above will be called r-solutions. Since the approximate solutions are nonnegative,
nondecreasing and admit a comparison principle the same is true for r-solutions.

Suppose now that (1.8) takes place. Set w = (m, n) where m(t, r) = n(t, r) = Aekt r , k > 0 and A > 0 is such that
w(0) ≥ w0. It is immediate to see that k and T can be chosen so that w is a supersolution of (2.1) in some interval (0, T ), for
all δ > 0 and R > 0. In particular, (1.9) holds.

It remains to prove the uniqueness result. Suppose w = (m, n) and w̃ = (m̃, ñ) are two solutions satisfying (1.6)–(1.8)
for some T > 0. Define f = m − m̃, g = n − ñ. We have that

∂t f − 4r∂rr f =
χ1

π
((m + n)∂r f + (f + g)∂rm̃).

Let ϕ(r) = e−r . Using that ϕ′
= −ϕ we multiply the equation by ϕf and integrate to get

d
dt


∞

0
ϕ|f |2 dr + 4


∞

0
rϕ|∂r f |2 dr

= 4


∞

0
ϕ′

|f |2 dr +
χ1

π


∞

0


(m + n)ϕf ∂r f − (∂r f + ∂rg)m̃ϕf − (f + g)m̃(ϕ′f + ϕ∂r f )


dr.
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Applying Hölder and Young inequalities it follows from (1.8) that there exists C > 0 such that

d
dt


∞

0
ϕ|f |2 dr + 2


∞

0
rϕ|∂r f |2 dr ≤


∞

0
rϕ|∂rg|2 dr + C


∞

0
ϕ(|f |2 + |g|2) dr (2.17)

we may write analogously that

d
dt


∞

0
ϕ|g|2 dr + 2


∞

0
rϕ|∂rg|2 dr ≤


∞

0
rϕ|∂r f |2 dr + C


∞

0
ϕ(|f |2 + |g|2) dr. (2.18)

Since f (0) = g(0) = 0, from (2.17), (2.17) we conclude that f (t) = g(t) = 0 for t < T . �

Remark 2.4. Let w be a supersolution of (2.1) and w be a r-solution of (1.1) such that w(0) ≥ w(0). It follows from
Lemma 2.3 and the construction of r-solutions that w ≥ w.

We observe that r-solutions are defined for all t > 0. Nevertheless, the definition below of a blowing up solution applies
even to r-solutions.

Definition 2.5. Let w be a solution of (1.1) and set w(t, 0) = limr→0 w(t, r). Given T > 0 define B(T ) = {t ∈ (0, T ),
w(t, 0) > 0}. We say that w is a global solution if µ(B(T )) = 0 for all T > 0, where µ is the Lebesgue measure in R.
Otherwise, we say that w blows up and define the blowup time Tmax as Tmax = supT>0{µ(B(T )) = 0}.

From (1.5) we see that Tmax corresponds to the time where at least one of the species collapses to a Dirac mass.
We next address the question of the uniqueness of solutions. We first show the following.

Proposition 2.6. Let w0 satisfy (1.8) and let w(t) be a r-solution such that w(0) = w0. Suppose (1.9) holds for some T > 0.
Then w(t) − w0 ∈ (L2(0, ∞))2 for all t < T .

Proof. Let w̃0 = (m̃0, ñ0) ∈ (W 2,∞(0, ∞))2 be such that w0 − w̃0 ∈ (L2(0, ∞))2. Given k ∈ N define wk = (mk, nk) as the
solution of (2.1) corresponding to δ = k and R = 1/k; see the proof of Theorem 1.1. Let w̃k = (m̃k, ñk) = wk − w̃0. It follows
from (2.1) that w̃(0) = w̃(R) = 0 and

∂tm̃ − 4∂r((r + δ)∂r(m̃ + m0) − (m̃ + m0)) =
χ1

π
(m̃ + m0 + ñ + n0)∂r(m̃ + m0).

Multiplying this by m̃ and integrating over (0, R) yield

d
dt

 R

0
|m̃|

2 dr + 4
 R

0
(r + δ)|∂rm̃|

2 dr + 4
 R

0
(r + δ)∂rm0∂rmdr

− 4
 R

0
(m̃ + m0)∂m̃ dr =

χ1

π

 R

0
(m̃ + m0 + ñ + n0)∂r(m̃ + m0)m̃ dr. �

3. Stationary solutions

As noticed in [10], there exists a straight connection between the stationary solutions of (1.1) and the solutions of the
following Liouville problem for systems.

Given A = (ai,j)i,j=1,2 and Mi > 0, i = 1, 2 find z1, z2 such that

−∆z1 = ea1,1z1+a1,2z2 ,

−∆z2 = ea2,1z1+a2,2z2 ,
R2

ea1,1z1+a1,2z2 = M1,
R2

ea2,1z1+a2,2z2 = M2.

(3.1)

In [9] the result below is proved. Suppose A is symmetric and ai,j ≥ 0, i, j = 1, 2. Then (3.1) has a solution if and only if

8π(M1 + M2) =


i=1,2


j=1,2

ai,jMiMj, M1a1,1 ≤ 8π, M2a2,2 ≤ 8π, (3.2)

The connection between (1.2) and (3.1) goes as follows. Given χ1, χ2,m∞, n∞ positive numbers set a1,1 = χ2
1 , a2,2 = χ2

2 ,
a1,2 = a2,1 = χ1χ2, M1 = m∞χ−1

1 ,M2 = n∞χ−1
2 , w∞ = (m∞, n∞). Then (3.2) is equivalent to

w∞ ∈ P0 ∩ Q̊+
; (3.3)
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see (1.15) and (1.16). Suppose (3.3) holds and consider z1, z2 a solution of (3.1). Then ũ = −χ1∆z1, ṽ = −χ2∆z2 and
z = χ1z1 + χ2z2 satisfy (1.3) and

−∆z = ũ + ṽ. (3.4)

Moreover, it follows from (3.1) that log ũ = logχ1 + χ1z and log ṽ = logχ2 + χ2z, yielding ∇ũ = χ1ũ∇z, ∇ṽ = χ2ṽ∇z.
Hence, ∆ũ = χ1∇ · (ũ∇z), ∆ṽ = χ2∇ · (ṽ∇z). This and (3.4) show that

(ũ, ṽ) ∈ (L1(R2))2 (3.5)

is a stationary solution of (1.2). Use ũ, ṽ in (1.5) to define m̃,ñ. It follows thus from the results of [9] that (3.3) ensures the
existence of a stationary solution w̃ = (m̃, ñ) of

−4r∂rrm̃ −
χ1

π
(m̃ + ñ)∂rm̃ = 0,

−4r∂rr ñ −
χ2

π
(m̃ + ñ)∂r ñ = 0,

w̃(∞) = w∞.

(3.6)

By (1.5) and (3.5) we get m̃(0) = ñ(0) = 0. Moreover, it is easy to see from (3.6) that m̃ and ñ are increasing and concave.
We now show that m̃′(0), ñ′(0) are finite. Indeed, setting

µ =
8π
χ1

m̃ +
8π
χ2

ñ,

η = m̃ + ñ

we get from (3.6) that r∂rrµ + ∂rη
2

= 0. We may assume that χ1 ≤ χ2. Since µ and η are concave we get

8π
χ2

r∂rrη + ∂rη
2

≥ 0.

Using that r∂rη converges to 0 along a subsequence we have

8π
χ2

(r∂rη − η) + η2
≥ 0. (3.7)

Choose R > 0 small enough so that χ2η < 8π . Integrating (3.7) over (r, R) we obtain

8πη(r)
r(8π − χ2η(r))

≤
8πη(R)

R(8π − χ2η(R))
.

Letting r → 0 we conclude that η′(0) is finite. Hence, m̃′(0) and ñ′(0) are finite.

4. Blowup solutions

In this section we show that r-solutions blow up in the supercritical case. It is useful to define

µ =
1
χ1

m +
1
χ2

n, η = m + n. (4.1)

It follows from (1.1) that

∂tµ − 4r∂rrµ =
1
2π

η2. (4.2)

Proof of Theorem 1.2. Let w̃ = (m̃, ñ) be a stationary solution of (1.1), so that P(w̃∞) = 0 and R(w̃∞) > 0. Given k > 1
consider wk = (mk, nk) a r-solution of (1.1) satisfyingmk(0) = km̃, nk(0) = kñ. We have that wk blows up. To see this, note
that kw∞ ∈ P−, see (1.14), and that

−4r∂rrmk(0, r) −
χ1

π
(mk(0, r) + nk(0, r))∂rmk(0, r) = k(1 − k)(m̃ + ñ)∂rm̃ ≤ 0,

−4r∂rrnk(0, r) −
χ1

π
(mk(0, r) + nk(0, r))∂rnk(0, r) = k(1 − k)(m̃ + ñ)∂r ñ ≤ 0.

Thus wk(t) is nondecreasing in t (this is true for the approximate regularized solutions constructed in Theorem 1.1 and a
fortiori for wk). Consider next µk and ηk as in (4.1) withm and n replaced by µk and nk. Integrating (4.2) over (a, b) yields b

a
∂tµk(t, r) dr = 4r∂rµk(t, r) +

1
2π

ηk(t, r)2 − 4µk(t, r) |
b
a .
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Since wk(t) is nondecreasing in t we have from Fubini’s lemma

d
dt

 b

0
µk(t, r) dr ≥

 b

0
∂tµk(t, r) dr ≥ 4r∂rµk(t, r) +

1
2π

ηk(t, r)2 − 4µk(t, r) |
b
a .

It follows from the boundedness of wk that there exists a sequence {ρn}n∈N such that ρn∂µk(ρn) → 0 as n → ∞. Writing
(4.3) for ρ = ρn and then letting n → ∞ we obtain

d
dt

 b

0
µk(t, r) dr ≥ 4b∂rµk(t, b) +

1
2π

η2
k(t, b) − 4µk(t, b)

≥
1
2π

η2
k(t, b) − 4µk(t, b) = −

1
2π

P(wk(t, b)) (4.3)

for all t such that wk(t) = 0. Choose b large enough so that A = −P(wk(0, b)) > 0. Since mk(t), nk(t) are nondecreasing
−P(wk(t, R)) > A for all t > 0. Suppose that for some T > 0wk(t) = 0 a.e. in (0, T ). Integrating (4.3) we get

π

χ1
m∞ +

π

χ2
n∞


b ≥

 b

0
µk(t, r) dr ≥ AT .

This shows that wk blows up.
Consider now w a r-solution such that w∞ ∈ P−

∩ Q+. Then there exists s < 1 such that sw∞ ∈ P0 ∩ Q+. It follows
that there exists a stationary solution w̃ such that w̃(∞) = sw∞. Note from the scale invariance of the problem that
w̃λ(r) = w̃(λr) is also a stationary solution for all λ > 0.Wemay pick λ large enough and 1 < k < s−1 so thatw(0) ≥ kw̃λ.
Then there exists a r-solution wk,λ coming from kw̃λ which can be compared to w; see Theorem 1.1. As shown above, wk,λ
blows up so that w also blows up.

We now treat the case w∞ ∈ Q−. Suppose χ1m∞ > 8π . We have that

∂tm − 4r∂rrm ≥
χ1

π
m∂rm.

Thus m is a supersolution of the corresponding scalar equation and we can argue as previously. The case χ2n∞ > 8π is
clearly analogous. �

5. Global solutions

We now show that solutions corresponding to the subcritical and critical regions are global. Inequality (5.1) below plays
an essential role in the proof of Theorem 1.3 and is the system version of inequality (2.6) of [1]. The proof is included here
for the reader’s convenience.

Lemma 5.1. Let w = (m, n) be a r-solution of (1.1) and let µ, η be defined by (4.1) for w = wk. Then given T > 0 there exists
C = C(T , w∞) > 0 such that T

0

 1

0

P(w(t, r))
r

dr dt ≤ C . (5.1)

Proof. Let wk = (mk, nk) be a solution of (2.1) as constructed in the proof of Theorem 1.1 and let µk, ηk be defined by (4.1)
for w = wk. Then

∂tµk − 4(r + 1/k)∂rrµk =
1
2π

η2
k . (5.2)

We have that 1

0
(r + 1/k) log(r + 1/k)∂rrµk =

 1

0
µk∂rr((r + 1/k) log(r + 1/k))

− (r + 1/k) log(r + 1/k)∂rµk |
1
0 +(1 + log(r + 1/k))µk |

1
0

=

 1

0

1
r
µk − (r + 1/k) log(r + 1/k)∂rµk |

1
0 +(1 + log(1 + 1/k))µk(t, 1)

≤

 1

0

1
r
µk + (1 + log(1 + 1/k))µk(t, 1) (5.3)

and  1

0
log(r + 1/k)∂rη2

k = −

 1

0

1
r
η2
k + log(1 + 1/k)η2

k(t, 1). (5.4)
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Using (1.11) and (5.2)–(5.4) we get

d
dt

 1

0
µk log(r + 1/k) −

 1

0

P(wk)

r
+ (1 + log(1 + 1/k))µk(t, 1) ≥ log(1 + 1/k)η2

k(t, 1).

Integrating in time and letting k → ∞ (5.1) follows easily. �

The following lemma will also be useful.

Lemma 5.2. Let T > 0 and let f : (0, T ) × (0, 1) → R be a measurable nonnegative function such that T

0

 1

0

1
r
f (t, r) dr dt < ∞. (5.5)

Then f (t, r) → 0 as r → 0 for a.a. t ∈ (0, T ).

Proof. Let A = {t ∈ (0, T ), limr→0 f (t, r) = 0} and B = (0, T ) ⊂ A. We argue by contradiction and assume that µ(B) > 0,
where µ is the usual Lebesgue measure. Given n ∈ N, set

Bn = {t ∈ B, ∃ rn(t) > 0 such that f (t, r) > 1/n in Vn(t) := (0, rn(t))}.

Then Bn ⊂ Bn+1 and

B =


n∈N

Bn,

so that µ(Bm) > 0 for some m. Thus
Bm

1
m


Vm(t)

1
r
dr dt ≤

 T

0

 1

0

1
r
f (t, r) dr dt < ∞.

This is clearly a contradiction. �

Proof of Theorem 1.3. We recall that if w∞ ∈ P0 ∩ Q̊+ then there exists a stationary solution w̃ such that w̃(∞) = w∞;
see Section 2.

Suppose first that w∞ ∈ P̊+
∩ Q̊+. Assuming without loss of generality that χ1 ≤ χ2 set

f (m) = 8π
m
χ1

+ 8π
n∞

χ2
− (m + n∞)2.

Then f (m∞) = P(w∞) > 0. Furthermore,

f

8π
χ1


= 8πn∞


1
χ2

−
2
χ1


− n2

∞
< 0

so that there exists m′
∈ (m∞, 8πχ−1

1 ) such that f (m′) = 0 so that (m′, n∞) ∈ P0 ∩ Q̊+. We can then clearly choose
w̃∞ = (m̃∞, ñ∞) ∈ P0 ∩ Q̊+ such thatm∞ < m̃∞ < m′ and n∞ < ñ∞. Consider a stationary solution w̃ = (m̃, ñ) satisfying

w̃(∞) = w̃∞ > w∞. (5.6)

Recall that w̃λ(r) = w̃(λr) is also a stationary solution for all λ > 0. Using (1.8) and (5.6) we may choose λ large enough
so that w0 ≤ w̃λ. It is easy to see that wλ is a supersolution of (2.11). It follows then from Remark 2.4 that w ≤ w̃λ. Since
w̃λ has finite derivative at zero, we conclude that w is a global solution.

Consider next the critical case w∞ ∈ P0 ∩ Q+. We have that w(t, r) ≤ w∞ for all t > 0, r > 0 and so w(t, r) ∈ P+. It
follows from Lemmas 5.1 and 5.2 that P(w(t, r)) → 0 as r → 0 for a.a. t > 0. But then either w(t, 0) = 0 or w(t, 0) = w∞

a.e. in t . The second alternative cannot hold. Indeed, define z(t, r) as the solution of
∂tz − 4r∂rrz =

χ1

π
z + n∞∂rz in (0, T + 1) × (1, 2),

z(1, t) = z(2, t) = m∞ in (0, T + 1),
z(0, r) = m0(r) in (1, 2).

Then the strong maximum principle ensures that z(T , r) < m∞ for r ∈ (1, 2), so that m∞(T , r) ≤ z(t, r) < m∞. We
conclude thatw(t, 0) = 0 a.e., i.e., the solution is global. An analogous but simpler argument can be used to show that if the
region P+

∩ Q0 solutions are global. �
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6. Self-similar asymptotics

We now show that global solutions are asymptotically self-similar as described in Theorem 1.4. As observed in the proof
of Theorem 1.3, when w∞ ∈ P̊+

∩ Q+ there exists a stationary solution w̃ such that w̃ ≥ w0. In this case uniqueness of
solutions holds, see Theorem 1.1, so that the semigroup S(t) associated to (1.1) is well defined. Consider also the dilation
dλw(r) = w(λr) for w ∈ (C[0, ∞))2 and λ > 0. Then the scale invariance of the problem means that

dλS(λt) = S(t)dλ (6.1)

for all λ > 0. Let us first discuss the existence of a self-similar solution.

Proposition 6.1. There exists a self-similar solution w of (1.1) such that w(t, 0) = 0 for all t > 0.

Proof. Let w0 satisfy (1.8) and w∞ ∈ P̊+
∩Q+. Note that dλw0 is nondecreasing in λ so that S(t)dλw0 is also nondecreasing

in λ. Define w̃(t) such that S(t)dλw0 ↗ w̃(t) as λ ↗ ∞. Fix µ > 0. Since dλµ
= dλdµ, from (6.1) we get

w̃(t) = lim
λ→∞

S(t)dλw0 = lim
λ→∞

dλS(λt)w0 = lim
λ→∞

dλµS(λµt)w0

= dµ lim
λ→∞

dλS(λµt)w0 = dµ lim
λ→∞

S(µt)dλw0 = dµw̃(µt).

Thus w̃ is self-similar, i.e., w̃(µt, µr) = w̃(t, r). Defining the profile h of w̃ by h(y) = w̃(1, y), we have

w̃(t, r) = h(r/t). (6.2)

Well-known arguments relying upon parabolic regularity ensure that w̃ solves (1.1). Moreover, since w̃ ≥ d1w = w we see
that w̃(t, r) → w∞ as r → ∞ for all t > 0. It remains to show that w̃(t, 0) = 0 for t > 0. But (5.1) holds for dλw with
C independent of λ. Using Fatou’s lemma we conclude that (5.1) also holds for w̃. Thus w̃(t, 0) = 0 a.e. in t . Using (6.2) we
see that in fact w̃(t, 0) = 0 for all t . �

We next prove the uniqueness of the self-similar solution.

Proposition 6.2. The solution obtained in Proposition 6.1 is unique.

Proof. Supposew(t, r) = h(y) = (f (y), g(y)), where y = r/t , is a self-similar solution of (1.1) such that h(0) = 0. It follows
from (1.1) that

4f ′′
+ f ′

+
χ1

π


f (y)
y

+
g(y)
y


f ′

= 0,

4g ′′
+ g ′

+
χ2

yπ


f (y)
y

+
g(y)
y


g ′

= 0.
(6.3)

We complete the proof in four steps.
Step 1—We show f ′(0) and g ′(0) are finite.

It is easy to see from (6.3) that f and g must be nondecreasing and concave. In particular, f (y)/y and g(y)/y are
nonincreasing functions, so it holds that

f ′
+ 4f ′′

+
χ1

π


f (z)
z

+
g(z)
z


f ′

≥ 0

for z < y. Hence

4f ′(z) ≤ f (z) + 4f ′(z) +
χ1

π


f (z)
z

+
g(z)
z


≤ f (y) + 4f ′(y) +

χ1

π


f (z)
z

+
g(z)
z


f (y). (6.4)

Consider as in [3] the auxiliary function v(y) = f (y) − 4yf ′(y). Then (6.3) yields

v′(y) = f ′(y)


−3 + y +
4χ1

π
(f (y) + g(y))


.

Therefore, v is decreasing in some interval [0, ỹ]. Moreover, there exists a sequence yn → 0 such that ynf ′(yn) → 0,
otherwise f would be unbounded at zero. Thus v(0) = 0 and v(y) < 0 for y < ỹ. Since an analogous argument holds for g ,
we may choose ỹ eventually smaller such that for y < ỹ

f (y)
y

≤ 4f ′(y) and
g(y)
y

≤ 4g ′(y).
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Using this we get from (6.4) that

4f ′(z) ≤ f (y) + 4f ′(y) +
4χ1

π
(f ′(z) + g ′(z))f (y) (6.5)

for z < y < ỹ. Analogously we have

4g ′(z) ≤ g(y) + 4g ′(y) +
4χ2

π
(f ′(z) + g ′(z))g(y). (6.6)

Choose y such that

4χ1

π
f (y) +

4χ2

π
g(y) < 2.

It follows then from (6.5) and (6.6) that

2(f ′(z) + g ′(z)) ≤ f (y) + g(y) + 4(f ′(y) + g ′(y)),

showing that f ′(0) and g ′(0) are finite.

Step 2—We show that
(m∞ − f (y)) dy + (n∞ − g(y)) dy =

1
2
P(w∞). (6.7)

Indeed, it follows from (6.3) that

4π
χ1

yf ′′
+

4π
χ2

yg ′′
+

π

χ1
yf ′

+
π

χ2
yg ′

+
1
2


(f + g)2

′
= 0. (6.8)

Integrating in (0, y) yields

4π
χ1

(yf ′
− f ) +

4π
χ2

(yg ′
− g) +

 y

0

π

χ1
(f (y) − f (z)) +

π

χ2
(g(y) − g(z)) dz +

1
2
(f + g)2(y)

=
4π
χ1

(yf ′
− f ) +

4π
χ2

(yg ′
− g) +

 y

0

π

χ1
zf ′(z) +

π

χ2
zg ′(z) dz +

1
2
(f + g)2(y) = 0. (6.9)

We now write (6.9) for y = yn where {yn}n∈N is a sequence such that yn → ∞, ynf ′(yn) → 0 and yng ′(yn) → 0 as n → ∞.
Then (6.7) is a consequence of monotone convergence, upon letting n → ∞.

Step 3—Consider

w0(r) =


r if r ≤ m∞,
w∞ if r > m∞

and use it to construct a self-similar solution w as in the proof of Proposition 6.1. Let w be another self-similar solution such
that w(0) = 0. Then

w ≥ w. (6.10)

Indeed, given τ > 0 we know from Step 1 that ∂rw(τ, 0) is finite. We may then choose λ > 0 large enough so that
dλw0 ≥ w(τ). Therefore, dλw(t) ≥ w(τ + t). Hence, w(t) ≥ dλw(t) ≥ w(τ + t). Letting τ → 0, (6.10) follows.

Step 4—We now conclude. Let h = (f , g), h = (f , g) be the profiles of w, w, respectively, where w and w are as in Step 3.
From (6.10) we have h ≥ h and from (6.7) we obtain h = h. �

Proof of Theorem 1.4. Let w0 satisfy (1.8) be such that w∞ ∈ P̊+
∩ Q+. We have already observed in the beginning of

this section that in this case there is a unique solution w(t) starting at w0. Moreover, for τ > 0 S(τ )dλw0 ∈ C[0, ∞),
S(τ )dλw0(0) = 0, S(τ )dλw0(∞) = w∞ and S(τ )dλw0 ↗ ws(t) as λ → 0 pointwise in [0, ∞), where ws is self-similar.
Under those conditions it is easy to see that in fact

∥S(τ )dλw0 − ws(τ )∥∞ → 0 (6.11)

as λ → ∞. Since dλws(λ) = ws(1), using (6.1) and letting λ → ∞ we obtain from (6.11) for τ = 1 that

∥S(t)w0 − ws(t)∥∞ = ∥dtS(t)w0 − dtws(t)∥∞ = ∥S(1)dtw0 − ws(1)∥∞ → 0.

This proves (1.21). �



F. Dickstein / J. Math. Anal. Appl. 397 (2013) 441–453 453

References

[1] P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the disc, Topol. Methods
Nonlinear Anal. 27 (2006) 133–147.

[2] W. Jager, S. Luckhaus, On explosions of solutions to a systemof partial differential equationsmodelling chemotaxis, Trans. Amer.Math. Soc. 329 (1992)
819–824.

[3] P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl.
Sci. 29 (13) (2006) 1563–1583.

[4] J. Dolbeault, B. Perthame, Optimal critical mass in the two dimensional Keller–Segel model in R2 , C.R. Acad. Sci. Paris, Ser. I 339 (2004) 611–616.
[5] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller–Segelmodel: optimal criticalmass and qualitative properties of the solutions, Electron.

J. Differential Equations 44 (2006) 1–33.
[6] L. Corrias, B. Perthame, H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. 72 (2004)

1–28.
[7] P. Biler, Radially symmetric solutions of a chemotaxis model in the plane the supercritical case, in: Parabolic and Navier–Stokes Equations, in: Polish

Acad. Sci., vol. 81, Banach Center Publications, Warsaw, 2008, pp. 3–42.
[8] C. Conca, E. Espejo, K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller Segel system in R2 , European J. Appl.

Math. 22 (2011) 553–580.
[9] M. Chipot, I. Shafrir, G. Wolansky, On the solutions of Liouville systems, J. Differential Equations 140 (1997) 59–105.

[10] G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math. 13 (2002) 641–661.


	Sharp conditions for blowup of solutions of a chemotactical model for two species in  R2 
	Introduction
	Existence and uniqueness
	Stationary solutions
	Blowup solutions
	Global solutions
	Self-similar asymptotics
	References


