118 research outputs found

    Cdc7p-Dbf4p Regulates Mitotic Exit by Inhibiting Polo Kinase

    Get PDF
    Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint

    Home based exercise to improve turning and mobility performance among community dwelling older adults: protocol for a randomized controlled trial

    Get PDF
    Background: Turning is a common activity for older people, and is one of the activities commonly associated with falls during walking. Falls that occur while walking and turning have also been associated with an increased risk of hip fracture in older people. Despite the importance of stability during turning, there has been little focus on identifying this impairment in at risk older people, or in evaluating interventions aiming to improve this outcome. This study will evaluate the effectiveness of a 16 week tailored home based exercise program in older adults aged (50 years and above) who were identified as having unsteadiness during turning.Methods/Design: A single blind randomized controlled trial will be conducted, with assessors blind to group allocation. Study participants will be aged 50 years and above, living in the community and have been identified as having impaired turning ability [outside of age and gender normal limits on the Step Quick Turn (180 degree turn) task on the Neurocom® Balance Master with long plate]. After a comprehensive baseline assessment, those classified as having balance impairment while turning will be randomized to intervention or control group. The intervention group will receive a 16 week individualized balance and strength home exercise program, based on the Otago Exercise Program with additional exercises focused on improving turning ability. Intervention group will attend four visit to the assessment centre over 16 weeks period, for provision, monitoring, modification of the exercise and encourage ongoing participation. Participants in the control group will continue with their usual activities. All participants will be re-assessed on completion of the 16 week program. Primary outcome measures will be the Step Quick Turn Test and Timed-Up and Go test. Secondary outcomes will include other clinical measures of balance, psychological aspects of falls, incidence of falls and falls risk factors. Discussion: Results of this study will provide useful information for clinicians on the types of exercises to improve turning ability in older people with increased falls risk and the effectiveness of these exercises in improving outcomes

    A Mathematical Model of Mitotic Exit in Budding Yeast: The Role of Polo Kinase

    Get PDF
    Cell cycle progression in eukaryotes is regulated by periodic activation and inactivation of a family of cyclin–dependent kinases (Cdk's). Entry into mitosis requires phosphorylation of many proteins targeted by mitotic Cdk, and exit from mitosis requires proteolysis of mitotic cyclins and dephosphorylation of their targeted proteins. Mitotic exit in budding yeast is known to involve the interplay of mitotic kinases (Cdk and Polo kinases) and phosphatases (Cdc55/PP2A and Cdc14), as well as the action of the anaphase promoting complex (APC) in degrading specific proteins in anaphase and telophase. To understand the intricacies of this mechanism, we propose a mathematical model for the molecular events during mitotic exit in budding yeast. The model captures the dynamics of this network in wild-type yeast cells and 110 mutant strains. The model clarifies the roles of Polo-like kinase (Cdc5) in the Cdc14 early anaphase release pathway and in the G-protein regulated mitotic exit network

    The Druze: A Population Genetic Refugium of the Near East

    Get PDF
    BACKGROUND: Phylogenetic mitochondrial DNA haplogroups are highly partitioned across global geographic regions. A unique exception is the X haplogroup, which has a widespread global distribution without major regions of distinct localization. PRINCIPAL FINDINGS: We have examined mitochondrial DNA sequence variation together with Y-chromosome-based haplogroup structure among the Druze, a religious minority with a unique socio-demographic history residing in the Near East. We observed a striking overall pattern of heterogeneous parental origins, consistent with Druze oral tradition, together with both a high frequency and a high diversity of the mitochondrial DNA (mtDNA) X haplogroup within a confined regional subpopulation. Furthermore demographic modeling indicated low migration rates with nearby populations. CONCLUSIONS: These findings were enabled through the use of a paternal kindred based sampling approach, and suggest that the Galilee Druze represent a population isolate, and that the combination of a high frequency and diversity of the mtDNA X haplogroup signifies a phylogenetic refugium, providing a sample snapshot of the genetic landscape of the Near East prior to the modern age

    Cdc20 Is Critical for Meiosis I and Fertility of Female Mice

    Get PDF
    Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C), initiates sister-chromatid separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome missegregation and formation of aneuploid gametes

    The FLASSH study: protocol for a randomised controlled trial evaluating falls prevention after stroke and two sub-studies

    Get PDF
    This randomised controlled trial aims to evaluate the effectiveness of a multi-factorial falls prevention program for stroke survivors who are at high risk of falling when they return home after rehabilitation. Intervention will consist of a home exercise program as well as individualised falls prevention and injury minimisation strategies based on identified risk factors for falls. Additionally, two sub-studies will be implemented in order to explore other key areas related to falls in this population. The first of these is a longitudinal study evaluating the relationship between fear of falling, falls and function over twelve months, and the second evaluates residual impairment in gait stability and obstacle crossing twelve months after discharge from rehabilitation

    A Three-Stage Colonization Model for the Peopling of the Americas

    Get PDF
    Background: We evaluate the process by which the Americas were originally colonized and propose a three-stage model that integrates current genetic, archaeological, geological, and paleoecological data. Specifically, we analyze mitochondrial and nuclear genetic data by using complementary coalescent models of demographic history and incorporating nongenetic data to enhance the anthropological relevance of the analysis. Methodology/Findings: Bayesian skyline plots, which provide dynamic representations of population size changes over time, indicate that Amerinds went through two stages of growth <40,000 and <15,000 years ago separated by a long period of population stability. Isolation-with-migration coalescent analyses, which utilize data from sister populations to estimate a divergence date and founder population sizes, suggest an Amerind population expansion starting <15,000 years ago. Conclusions/Significance: These results support a model for the peopling of the New World in which Amerind ancestors diverged from the Asian gene pool prior to 40,000 years ago and experienced a gradual population expansion as they moved into Beringia. After a long period of little change in population size in greater Beringia, Amerinds rapidly expanded into the Americas <15,000 years ago either through an interior ice-free corridor or along the coast. This rapid colonization of the New World was achieved by a founder group with an effective population size of <1,000–5,400 individuals. Our model presents a detailed scenario for the timing and scale of the initial migration to the Americas, substantially refines th

    Caenorhabditis elegans Cyclin B3 Is Required for Multiple Mitotic Processes Including Alleviation of a Spindle Checkpoint–Dependent Block in Anaphase Chromosome Segregation

    Get PDF
    The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration, centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3–depleted embryos is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective suppression or enhancement of CYB-3–dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3 plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC–dependent block in anaphase chromosome segregation

    Noncanonical DNA Motifs as Transactivation Targets by Wild Type and Mutant p53

    Get PDF
    Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0–13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (n = 0–13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi–in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical ½-(a single decamer) and ¾-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of ½- and ¾-site REs greatly expands the p53 master regulatory network
    corecore