59 research outputs found

    Quantum Surveying: How Entangled Pairs Act as Measuring Rods on Manifolds of Generalized Coherent States

    Full text link
    Generalized coherent states arise from reference states by the action of locally compact transformation groups and thereby form manifolds on which there is an invariant measure. It is shown that this implies the existence of canonically associated Bell states that serve as measuring rods by relating the metric geometry of the manifold to the observed EPR correlations. It is further shown that these correlations can be accounted for by a hidden variable theory which is non-local but invariant under the stability group of the reference state.Comment: 14 pages, 0 figures, plain te

    Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems

    Get PDF
    If quantum states exhibit small nonlinearities during time evolution, then quantum computers can be used to solve NP-complete problems in polynomial time. We provide algorithms that solve NP-complete and #P oracle problems by exploiting nonlinear quantum logic gates. It is argued that virtually any deterministic nonlinear quantum theory will include such gates, and the method is explicitly demonstrated using the Weinberg model of nonlinear quantum mechanics.Comment: 10 pages, no figures, submitted to Phys. Rev. Let

    Asymmetric universal entangling machine

    Full text link
    We give a definition of asymmetric universal entangling machine which entangles a system in an unknown state to a specially prepared ancilla. The machine produces a fixed state-independent amount of entanglement in exchange to a fixed degradation of the system state fidelity. We describe explicitly such a machine for any quantum system having dd levels and prove its optimality. We show that a d2d^2-dimensional ancilla is sufficient for reaching optimality. The introduced machine is a generalization to a number of widely investigated universal quantum devices such as the symmetric and asymmetric quantum cloners, the symmetric quantum entangler, the quantum information distributor and the universal-NOT gate.Comment: 28 pages, 3 figure

    q- Deformed Boson Expansions

    Full text link
    A deformed boson mapping of the Marumori type is derived for an underlying su(2)su(2) algebra. As an example, we bosonize a pairing hamiltonian in a two level space, for which an exact treatment is possible. Comparisons are then made between the exact result, our q- deformed boson expansion and the usual non - deformed expansion.Comment: 8 pages plus 2 figures (available upon request

    Separability and Fourier representations of density matrices

    Get PDF
    Using the finite Fourier transform, we introduce a generalization of Pauli-spin matrices for dd-dimensional spaces, and the resulting set of unitary matrices S(d)S(d) is a basis for d×dd\times d matrices. If N=d1×d2×...×dbN=d_{1}\times d_{2}\times...\times d_{b} and H^{[ N]}=\bigotimes H^{% [ d_{k}]}, we give a sufficient condition for separability of a density matrix ρ\rho relative to the H[dk]H^{[ d_{k}]} in terms of the L1L_{1} norm of the spin coefficients of ρ>.\rho >. Since the spin representation depends on the form of the tensor product, the theory applies to both full and partial separability on a given space H[N]H^{[ N]}% . It follows from this result that for a prescribed form of separability, there is always a neighborhood of the normalized identity in which every density matrix is separable. We also show that for every prime pp and n>1n>1 the generalized Werner density matrix W[pn](s)W^{[ p^{n}]}(s) is fully separable if and only if s(1+pn1)1s\leq (1+p^{n-1}) ^{-1}

    Search for exchange-antisymmetric two-photon states

    Get PDF
    Atomic two-photon J=0 \leftrightarrowJ'=1 transitions are forbidden for photons of the same energy. This selection rule is related to the fact that photons obey Bose-Einstein statistics. We have searched for small violations of this selection rule by studying transitions in atomic Ba. We set a limit on the probability vv that photons are in exchange-antisymmetric states: v<1.2107v<1.2\cdot10^{-7}.Comment: 5 pages, 4 figures, ReVTeX and .eps. Submitted to Phys. Rev. Lett. Revised version 9/25/9

    Passage of Time in a Planck Scale Rooted Local Inertial Structure

    Get PDF
    It is argued that the `problem of time' in quantum gravity necessitates a refinement of the local inertial structure of the world, demanding a replacement of the usual Minkowski line element by a 4+2n dimensional pseudo-Euclidean line element, with the extra 2n being the number of internal phase space dimensions of the observed system. In the refined structure, the inverse of the Planck time takes over the role of observer-independent conversion factor usually played by the speed of light, which now emerges as an invariant but derivative quantity. In the relativistic theory based on the refined structure, energies and momenta turn out to be invariantly bounded from above, and lengths and durations similarly bounded from below, by their respective Planck scale values. Along the external timelike world-lines, the theory naturally captures the `flow of time' as a genuinely structural attribute of the world. The theory also predicts expected deviations--suppressed quadratically by the Planck energy--from the dispersion relations for free fields in the vacuum. The deviations from the special relativistic Doppler shifts predicted by the theory are also suppressed quadratically by the Planck energy. Nonetheless, in order to estimate the precision required to distinguish the theory from special relativity, an experiment with a binary pulsar emitting TeV range gamma-rays is considered in the context of the predicted deviations from the second-order shifts.Comment: 17 pages; Diagram depicting "the objective flow of time" is replaced with a much-improved diagra

    Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit

    Get PDF
    We show that for any Hilbert-space dimension, the optimal universal quantum cloner can be constructed from essentially the same quantum circuit, i.e., we find a universal design for universal cloners. In the case of infinite dimensions (which includes continuous variable quantum systems) the universal cloner reduces to an essentially classical device. More generally, we construct a universal quantum circuit for distributing qudits in any dimension which acts covariantly under generalized displacements and momentum kicks. The behavior of this covariant distributor is controlled by its initial state. We show that suitable choices for this initial state yield both universal cloners and optimized cloners for limited alphabets of states whose states are related by generalized phase-space displacements.Comment: 10 revtex pages, no figure

    Information Invariance and Quantum Probabilities

    Full text link
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as in quantum theory follows essentially from the assumption that all physical states of a higher dimensional system are those and only those from which one can post-select physical states of two-dimensional systems. The requirement that no more than one bit of information (as quantified by the quadratic measure) is contained in all possible post-selected two-dimensional systems is equivalent to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the occasion of his 60th birthday. Found. Phys. (2009

    Generalized Fock Spaces, New Forms of Quantum Statistics and their Algebras

    Get PDF
    We formulate a theory of generalized Fock spaces which underlies the different forms of quantum statistics such as ``infinite'', Bose-Einstein and Fermi-Dirac statistics. Single-indexed systems as well as multi-indexed systems that cannot be mapped into single-indexed systems are studied. Our theory is based on a three-tiered structure consisting of Fock space, statistics and algebra. This general formalism not only unifies the various forms of statistics and algebras, but also allows us to construct many new forms of quantum statistics as well as many algebras of creation and destruction operators. Some of these are : new algebras for infinite statistics, q-statistics and its many avatars, a consistent algebra for fractional statistics, null statistics or statistics of frozen order, ``doubly-infinite'' statistics, many representations of orthostatistics, Hubbard statistics and its variations.Comment: This is a revised version of the earlier preprint: mp_arc 94-43. Published versio
    corecore