58 research outputs found

    Analytical comparison of hypersonic flight and wind tunnel viscous/inviscid flow fields

    Get PDF
    Flow fields were computed about blunted, 0.524 and 0.698 radians, cone configurations to assess the effects of nonequilibrium chemistry on the flow field geometry, boundary layer edge conditions, boundary layer profiles, and heat transfer and skin friction. Analyses were conducted at typical space shuttle entry conditions for both laminar and turbulent boundary layer flow. In these calculations, a wall temperature of 1365 K (2000 F) was assumed. The viscous computer program used in this investigation was a modification of the Blottner non-similar viscous code which incorporated a turbulent eddy viscosity model after Cebeci. The results were compared with equivalent calculations for similar (scaled) configurations at typical wind tunnel conditions. Wind tunnel test gases included air, nitrogen, CF4 and helium. The viscous computer program used for wind tunnel conditions was the Cebeci turbulent non-similar computer code

    The Free Quon Gas Suffers Gibbs' Paradox

    Get PDF
    We consider the Statistical Mechanics of systems of particles satisfying the qq-commutation relations recently proposed by Greenberg and others. We show that although the commutation relations approach Bose (resp.\ Fermi) relations for q1q\to1 (resp.\ q1q\to-1), the partition functions of free gases are independent of qq in the range 1<q<1-1<q<1. The partition functions exhibit Gibbs' Paradox in the same way as a classical gas without a correction factor 1/N!1/N! for the statistical weight of the NN-particle phase space, i.e.\ the Statistical Mechanics does not describe a material for which entropy, free energy, and particle number are extensive thermodynamical quantities.Comment: number-of-pages, LaTeX with REVTE

    On the theory of composition in physics

    Full text link
    We develop a theory for describing composite objects in physics. These can be static objects, such as tables, or things that happen in spacetime (such as a region of spacetime with fields on it regarded as being composed of smaller such regions joined together). We propose certain fundamental axioms which, it seems, should be satisfied in any theory of composition. A key axiom is the order independence axiom which says we can describe the composition of a composite object in any order. Then we provide a notation for describing composite objects that naturally leads to these axioms being satisfied. In any given physical context we are interested in the value of certain properties for the objects (such as whether the object is possible, what probability it has, how wide it is, and so on). We associate a generalized state with an object. This can be used to calculate the value of those properties we are interested in for for this object. We then propose a certain principle, the composition principle, which says that we can determine the generalized state of a composite object from the generalized states for the components by means of a calculation having the same structure as the description of the generalized state. The composition principle provides a link between description and prediction.Comment: 23 pages. To appear in a festschrift for Samson Abramsky edited by Bob Coecke, Luke Ong, and Prakash Panangade

    Separability and Fourier representations of density matrices

    Get PDF
    Using the finite Fourier transform, we introduce a generalization of Pauli-spin matrices for dd-dimensional spaces, and the resulting set of unitary matrices S(d)S(d) is a basis for d×dd\times d matrices. If N=d1×d2×...×dbN=d_{1}\times d_{2}\times...\times d_{b} and H^{[ N]}=\bigotimes H^{% [ d_{k}]}, we give a sufficient condition for separability of a density matrix ρ\rho relative to the H[dk]H^{[ d_{k}]} in terms of the L1L_{1} norm of the spin coefficients of ρ>.\rho >. Since the spin representation depends on the form of the tensor product, the theory applies to both full and partial separability on a given space H[N]H^{[ N]}% . It follows from this result that for a prescribed form of separability, there is always a neighborhood of the normalized identity in which every density matrix is separable. We also show that for every prime pp and n>1n>1 the generalized Werner density matrix W[pn](s)W^{[ p^{n}]}(s) is fully separable if and only if s(1+pn1)1s\leq (1+p^{n-1}) ^{-1}

    Asymmetric universal entangling machine

    Full text link
    We give a definition of asymmetric universal entangling machine which entangles a system in an unknown state to a specially prepared ancilla. The machine produces a fixed state-independent amount of entanglement in exchange to a fixed degradation of the system state fidelity. We describe explicitly such a machine for any quantum system having dd levels and prove its optimality. We show that a d2d^2-dimensional ancilla is sufficient for reaching optimality. The introduced machine is a generalization to a number of widely investigated universal quantum devices such as the symmetric and asymmetric quantum cloners, the symmetric quantum entangler, the quantum information distributor and the universal-NOT gate.Comment: 28 pages, 3 figure

    Coherent States of the q--Canonical Commutation Relations

    Full text link
    For the qq-deformed canonical commutation relations a(f)a(g)=(1q)f,g1+qa(g)a(f)a(f)a^\dagger(g) = (1-q)\,\langle f,g\rangle{\bf1}+q\,a^\dagger(g)a(f) for f,gf,g in some Hilbert space H{\cal H} we consider representations generated from a vector Ω\Omega satisfying a(f)Ω=f,ϕΩa(f)\Omega=\langle f,\phi\rangle\Omega, where ϕH\phi\in{\cal H}. We show that such a representation exists if and only if ϕ1\Vert\phi\Vert\leq1. Moreover, for ϕ<1\Vert\phi\Vert<1 these representations are unitarily equivalent to the Fock representation (obtained for ϕ=0\phi=0). On the other hand representations obtained for different unit vectors ϕ\phi are disjoint. We show that the universal C*-algebra for the relations has a largest proper, closed, two-sided ideal. The quotient by this ideal is a natural qq-analogue of the Cuntz algebra (obtained for q=0q=0). We discuss the Conjecture that, for d<d<\infty, this analogue should, in fact, be equal to the Cuntz algebra itself. In the limiting cases q=±1q=\pm1 we determine all irreducible representations of the relations, and characterize those which can be obtained via coherent states.Comment: 19 pages, Plain Te

    Contribution to understanding the mathematical structure of quantum mechanics

    Full text link
    Probabilistic description of results of measurements and its consequences for understanding quantum mechanics are discussed. It is shown that the basic mathematical structure of quantum mechanics like the probability amplitudes, Born rule, commutation and uncertainty relations, probability density current, momentum operator, rules for including the scalar and vector potentials and antiparticles can be obtained from the probabilistic description of results of measurement of the space coordinates and time. Equations of motion of quantum mechanics, the Klein-Gordon equation, Schrodinger equation and Dirac equation are obtained from the requirement of the relativistic invariance of the space-time Fisher information. The limit case of the delta-like probability densities leads to the Hamilton-Jacobi equation of classical mechanics. Many particle systems and the postulates of quantum mechanics are also discussed.Comment: 21 page

    Generalized Fock Spaces, New Forms of Quantum Statistics and their Algebras

    Get PDF
    We formulate a theory of generalized Fock spaces which underlies the different forms of quantum statistics such as ``infinite'', Bose-Einstein and Fermi-Dirac statistics. Single-indexed systems as well as multi-indexed systems that cannot be mapped into single-indexed systems are studied. Our theory is based on a three-tiered structure consisting of Fock space, statistics and algebra. This general formalism not only unifies the various forms of statistics and algebras, but also allows us to construct many new forms of quantum statistics as well as many algebras of creation and destruction operators. Some of these are : new algebras for infinite statistics, q-statistics and its many avatars, a consistent algebra for fractional statistics, null statistics or statistics of frozen order, ``doubly-infinite'' statistics, many representations of orthostatistics, Hubbard statistics and its variations.Comment: This is a revised version of the earlier preprint: mp_arc 94-43. Published versio

    Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit

    Get PDF
    We show that for any Hilbert-space dimension, the optimal universal quantum cloner can be constructed from essentially the same quantum circuit, i.e., we find a universal design for universal cloners. In the case of infinite dimensions (which includes continuous variable quantum systems) the universal cloner reduces to an essentially classical device. More generally, we construct a universal quantum circuit for distributing qudits in any dimension which acts covariantly under generalized displacements and momentum kicks. The behavior of this covariant distributor is controlled by its initial state. We show that suitable choices for this initial state yield both universal cloners and optimized cloners for limited alphabets of states whose states are related by generalized phase-space displacements.Comment: 10 revtex pages, no figure

    Information Invariance and Quantum Probabilities

    Full text link
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as in quantum theory follows essentially from the assumption that all physical states of a higher dimensional system are those and only those from which one can post-select physical states of two-dimensional systems. The requirement that no more than one bit of information (as quantified by the quadratic measure) is contained in all possible post-selected two-dimensional systems is equivalent to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the occasion of his 60th birthday. Found. Phys. (2009
    corecore