1,480 research outputs found

    Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers

    Get PDF
    The effects of hydrogen (H2) and deuterium (D2) absorption were studied in two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using polarized neutron reflectivity (PNR). PNR was measured in an external magnetic field H applied in the plane of the sample with the magnetization M confined in the plane for {\mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal thicknesses of the Co and Pd layers were 2.5 {\AA} and 21 {\AA}, respectively. Because of these small values, the actual layer chemical composition, thickness, and interface roughness parameters were determined from the nuclear scattering length density profile ({\rho}_n) and its derivative obtained from both x-ray reflectivity and PNR, and uncertainties were determined using Monte Carlo analysis. The PNR {\rho}_n showed that although D2 absorption occurred throughout the samples, absorption in the multilayer stack was modest (0.02 D per Pd atom) and thus did not expand. Direct magnetometry showed that H2 absorption decreased the total M at saturation and increased the component of M in the plane of the sample when not at saturation. The PNR magnetic scattering length density ({\rho}_m) revealed that the Pd layers in the multilayer stack were magnetized and that their magnetization was preferentially modified upon D2 absorption. In one sample, a modulation of M with twice the multilayer period was observed at {\mu}_o H= 0.65 T, which increased upon D2 absorption. These results indicate that H2 or D2 absorption decreases both the PMA and total magnetization of the samples. The lack of measurable expansion during absorption indicates that these changes are primarily governed by modification of the electronic structure of the material.Comment: to appear in Physics review B, 201

    Flight and tunnel test results of the MDC mechanical jet noise suppressor nozzle

    Get PDF
    The flight and wind tunnel tests to determine the acoustic and performance effects of a mechanical jet noise suppressor nozzle mounted on a Viper engine of an HS-125 airplane are discussed. Flyover noise measurements were made with microphones mounted on top of a 137.5 m bridge tower. Seven nozzle configurations including two references nozzles, two suppressors, and three ejector inlets were tested. The suppressor nozzle of interest for an advanced supersonic transport, the suppressor/treated ejector, achieved a measured noise reduction of 14 EPNdB relative to a conventional conical reference nozzle at the highest pressure ratio tested (approximately 2.5). The unique engine nacelle, flight hardware, and nacelles from the HS-125 flight test program, combined with a simulated HS-125 fuselage were windtunnel tested. Both propulsion and acoustic data were recorded. Preliminary thrust data results from the wind tunnel tests are summarized and compared to other mechanical suppressor test results. The test results indicate that a noise reduction of at least 16 EPNdB would be possible for the suppressor/ejector nozzle scaled to typical AST engine size with a 5% thrust loss at a typical takeoff climb speed

    Sputtering of Oxygen Ice by Low Energy Ions

    Get PDF
    Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.Comment: to be published in Surface Science (2015

    Magnetically asymmetric interfaces in a (LaMnO3_3)/(SrMnO3_3) superlattice due to structural asymmetries

    Full text link
    Polarized neutron reflectivity measurements of a ferromagnetic [(LaMnO3_3)11.8_{11.8}/(SrMnO3_3)4.4_{4.4}]6_6 superlattice reveal a modulated magnetic structure with an enhanced magnetization at the interfaces where LaMnO3_3 was deposited on SrMnO3_3 (LMO/SMO). However, the opposite interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The magnetic asymmetry arises from the difference in lateral structural roughness of the two interfaces observed via electron microscopy, with strong ferromagnetism present at the interfaces that are atomically smooth over tens of nanometers. This result demonstrates that atomic-scale roughness can destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure

    Preventative tele-health supported services for early stage chronic obstructive pulmonary disease: a protocol for a pragmatic randomized controlled trial pilot

    Get PDF
    Background Chronic Obstructive Pulmonary Disease (COPD) is a prevalent debilitating long term condition. It is the second most common cause of emergency admission to hospital in the UK and remains one of the most costly conditions to treat through acute care. Tele-health monitoring offers potential to reduce the rates of re-hospitalisation and emergency department visits and improve quality of life for people with COPD. However, the current evidence base to support technology adoption and implementation is limited and the resource implications for implementing tele-health in practice can be very high. This trial will employ tele-health monitoring in a preventative capacity for patients diagnosed with early stage COPD following discharge from hospital to determine whether it reduces their need for additional health service support or hospital admission and improves their quality of life. Methods/Design We describe a pilot study for a two arm, one site randomized controlled trial (RCT) to determine the effect of tele-health monitoring on self-management, quality of life and patient satisfaction. Sixty patients who have been discharged from one acute trust with a primary diagnosis of COPD and who have agreed to receive community clinical support following discharge from acute care will be randomly assigned to one of two groups: (a) Tele-health supported Community COPD Service; or (b) Usual Care. The tele-health supported service involves the patient receiving two home visits with a specialist COPD clinician (nurse or physiotherapist) then participating in daily tele-monitoring over an eight week period. Usual care consists of six home visits to the patient by specialist COPD clinicians again over eight successive weeks. Health status and quality of life data for all participants will be measured at baseline, on discharge from the service and at six months post discharge from the service. Discussion The tele-health service under study is a complex service delivered through a collaboration between local authority and health care partners. The implementation of this service demanded significant changes to established working patterns and has been a challenging process requiring considerable planning - a challenge that many providers are likely to face in the future. Trial registration Current Controlled Trials ISRCTN6885601

    Heavy Crane Foundations on Soft Clay

    Get PDF
    A very large mobile crane was used to lift a 3,150 kN steam generator through the roof of the containment building of a nuclear power plant. The maximum load on the crane was 19.8 MN, giving a track pressure of almost 600 kPa. Soil conditions were stiff clay underlain by softer clay. This paper describes the bearing capacity and settlement analysis performed to establish a suitable shallow foundation for the crane. The foundation load test confirmed that soil conditions had been adequately defined and that the foundation design was satisfactory
    • …
    corecore