1,078 research outputs found

    The Most Irrational Rational Theories

    Get PDF
    We propose a two-parameter family of modular invariant partition functions of two-dimensional conformal field theories (CFTs) holographically dual to pure three-dimensional gravity in anti de Sitter space. Our two parameters control the central charge, and the representation of SL(2,Z)SL(2,\mathbb{Z}). At large central charge, the partition function has a gap to the first nontrivial primary state of c24\frac{c}{24}. As the SL(2,Z)SL(2,\mathbb{Z}) representation dimension gets large, the partition function exhibits some of the qualitative features of an irrational CFT. This, for instance, is captured in the behavior of the spectral form factor. As part of these analyses, we find similar behavior in the minimal model spectral form factor as cc approaches 11.Comment: 25 pages plus appendices, 11 figure

    Simulating non-unitary dynamics using quantum signal processing with unitary block encoding

    Full text link
    We adapt a recent advance in resource-frugal quantum signal processing - the Quantum Eigenvalue Transform with Unitary matrices (QET-U) - to explore non-unitary imaginary time evolution on early fault-tolerant quantum computers using exactly emulated quantum circuits. We test strategies for optimising the circuit depth and the probability of successfully preparing the desired imaginary-time evolved states. For the task of ground state preparation, we confirm that the probability of successful post-selection is quadratic in the initial reference state overlap γ\gamma as O(γ2)O(\gamma^2). When applied instead to thermal state preparation, we show QET-U can directly estimate partition functions at exponential cost. Finally, we combine QET-U with Trotter product formula to perform non-normal Hamiltonian simulation in the propagation of Lindbladian open quantum system dynamics. We find that QET-U for non-unitary dynamics is flexible, intuitive and straightforward to use, and suggest ways for delivering quantum advantage in simulation tasks.Comment: 14 pages, 10 figures, minor corrections and updated citation

    Evaluating the noise resilience of variational quantum algorithms

    Get PDF
    We simulate the effects of different types of noise in state preparation circuits of variational quantum algorithms. We first use a variational quantum eigensolver to find the ground state of a Hamiltonian in presence of noise, and adopt two quality measures in addition to the energy, namely fidelity and concurrence. We then extend the task to the one of constructing, with a layered quantum circuit ansatz, a set of general random target states. We determine the optimal circuit depth for different types and levels of noise, and observe that the variational algorithms mitigate the effects of noise by adapting the optimised parameters. We find that the inclusion of redundant parameterised gates makes the quantum circuits more resilient to noise. For such overparameterised circuits different sets of parameters can result in the same final state in the noiseless case, which we denote as parameter degeneracy. Numerically, we show that this degeneracy can be lifted in the presence of noise, with some states being significantly more resilient to noise than others. We also show that the average deviation from the target state is linear in the noise level, as long as this is small compared to a circuit-dependent threshold. In this region the deviation is well described by a stochastic model. Above the threshold, the optimisation can converge to states with largely different physical properties from the true target state, so that for practical applications it is critical to ensure that noise levels are below this threshold.Comment: 22 pages, 13 figure

    Harmonic analysis of 2d CFT partition functions

    Get PDF
    We apply the theory of harmonic analysis on the fundamental domain of SL(2,Z)SL(2,\mathbb{Z}) to partition functions of two-dimensional conformal field theories. We decompose the partition function of cc free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space H/SL(2,Z)\mathbb H/SL(2,\mathbb Z), and of target space moduli space O(c,c;Z)\O(c,c;R)/O(c)×O(c)O(c,c;\mathbb Z)\backslash O(c,c;\mathbb R)/O(c)\times O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3_3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.Comment: 35+24 pages, v2: corrected a mistake in Sec 3, v3: minor errors fixe

    Non-unitary Trotter circuits for imaginary time evolution

    Full text link
    We propose an imaginary time equivalent of the well-established Pauli gadget primitive for Trotter-decomposed real time evolution, using mid-circuit measurements on a single ancilla qubit. Imaginary time evolution (ITE) is widely used for obtaining the ground state of a system on classical hardware, computing thermal averages, and as a component of quantum algorithms that perform non-unitary evolution. Near-term implementations on quantum hardware rely on heuristics, compromising their accuracy. As a result, there is growing interest in the development of more natively quantum algorithms. Since it is not possible to implement a non-unitary gate deterministically, we resort to the implementation of probabilistic imaginary time evolution (PITE) algorithms, which rely on a unitary quantum circuit to simulate a block encoding of the ITE operator - that is, they rely on successful ancillary measurements to evolve the system non-unitarily. Compared with previous PITE proposals, the suggested block encoding in this paper results in shorter circuits and is simpler to implement, requiring only a slight modification of the Pauli gadget primitive. This scheme was tested on the transverse Ising model and the fermionic Hubbard model and is demonstrated to converge to the ground state of the system.Comment: Added more explanation of the Pauli gadget primitive and motivation for using Trotter decomposition

    Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae

    Get PDF
    We investigated the dynamics of a gene regulatory network controlling the cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale network, derived from published genome-wide location data, consists of 21 transcription factors that regulate one another through 31 directed edges. The expression levels of the individual transcription factors were modeled using mass balance ordinary differential equations with a sigmoidal production function. Each equation includes a production rate, a degradation rate, weights that denote the magnitude and type of influence of the connected transcription factors (activation or repression), and a threshold of expression. The inverse problem of determining model parameters from observed data is our primary interest. We fit the differential equation model to published microarray data using a penalized nonlinear least squares approach. Model predictions fit the experimental data well, within the 95 % confidence interval. Tests of the model using randomized initial guesses and model-generated data also lend confidence to the fit. The results have revealed activation and repression relationships between the transcription factors. Sensitivity analysis indicates that the model is most sensitive to changes in the production rate parameters, weights, and thresholds of Yap1, Rox1, and Yap6, which form a densely connected core in the network. The modeling results newly suggest that Rap1, Fhl1, Msn4, Rph1, and Hsf1 play an important role in regulating the early response to cold shock in yeast. Our results demonstrate that estimation for a large number of parameters can be successfully performed for nonlinear dynamic gene regulatory networks using sparse, noisy microarray data

    Variational Phase Estimation with Variational Fast Forwarding

    Get PDF
    Subspace diagonalisation methods have appeared recently as promising means to access the ground state and some excited states of molecular Hamiltonians by classically diagonalising small matrices, whose elements can be efficiently obtained by a quantum computer. The recently proposed Variational Quantum Phase Estimation (VQPE) algorithm uses a basis of real time-evolved states, for which the energy eigenvalues can be obtained directly from the unitary matrix U=e−iHΔtU=e^{-iH{\Delta}t}, which can be computed with cost linear in the number of states used. In this paper, we report a circuit-based implementation of VQPE for arbitrary molecular systems and assess its performance and costs for the H2H_2, H3+H_3^+ and H6H_6 molecules. We also propose using Variational Fast Forwarding (VFF) to decrease to quantum depth of time-evolution circuits for use in VQPE. We show that the approximation provides a good basis for Hamiltonian diagonalisation even when its fidelity to the true time evolved states is low. In the high fidelity case, we show that the approximate unitary U can be diagonalised instead, preserving the linear cost of exact VQPE

    Quantum Computed Green's Functions using a Cumulant Expansion of the Lanczos Method

    Full text link
    In this paper, we present a quantum computational method to calculate the many-body Green's function matrix in a spin orbital basis. We apply our approach to finite-sized fermionic Hubbard models and related impurity models within Dynamical Mean Field Theory, and demonstrate the calculation of Green's functions on Quantinuum's H1-1 trapped-ion quantum computer. Our approach involves a cumulant expansion of the Lanczos method, using Hamiltonian moments as measurable expectation values. This bypasses the need for a large overhead in the number of measurements due to repeated applications of the variational quantum eigensolver (VQE), and instead measures the expectation value of the moments with one set of measurement circuits. From the measured moments, the tridiagonalised Hamiltonian matrix can be computed, which in turn yields the Green's function via continued fractions. While we use a variational algorithm to prepare the ground state in this work, we note that the modularity of our implementation allows for other (non-variational) approaches to be used for the ground state.Comment: 20 pages, 12 figure
    • …
    corecore