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Abstract We investigated the dynamics of a gene regulatory network controlling the
cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale
network, derived from published genome-wide location data, consists of 21 transcrip-
tion factors that regulate one another through 31 directed edges. The expression levels
of the individual transcription factors were modeled using mass balance ordinary
differential equations with a sigmoidal production function. Each equation includes
a production rate, a degradation rate, weights that denote the magnitude and type
of influence of the connected transcription factors (activation or repression), and a
threshold of expression. The inverse problem of determining model parameters from
observed data is our primary interest. We fit the differential equation model to pub-
lished microarray data using a penalized nonlinear least squares approach. Model
predictions fit the experimental data well, within the 95% confidence interval. Tests
of the model using randomized initial guesses and model-generated data also lend
confidence to the fit. The results have revealed activation and repression relationships
between the transcription factors. Sensitivity analysis indicates that the model is most
sensitive to changes in the production rate parameters,weights, and thresholds ofYap1,
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1458 K. D. Dahlquist et al.

Rox1, and Yap6, which form a densely connected core in the network. The model-
ing results newly suggest that Rap1, Fhl1, Msn4, Rph1, and Hsf1 play an important
role in regulating the early response to cold shock in yeast. Our results demonstrate
that estimation for a large number of parameters can be successfully performed for
nonlinear dynamic gene regulatory networks using sparse, noisy microarray data.

Keywords Dynamic network model · Penalized least squares

1 Introduction

All organisms must respond to changes and stresses in their environment to survive
and reproduce. Such environmental stresses include changes in nutrient or oxygen
availability, changes in osmolarity, salinity, or pH, the presence of reactive oxygen
species or other damaging agents, and sudden or large changes in temperature, either
an increase (heat shock) or decrease (cold shock). Organisms respond to environmental
stresses through characteristic programs of gene expression. Among the most inter-
esting and challenging problems in understanding this environmental stress response
is the dynamic behavior of gene expression networks within the cell. The careful reg-
ulation of these networks is a fundamental activity of the organism. In this paper, we
discuss the development and application of a dynamical systems model for regulation
of gene expression during the early response to cold shock in budding yeast.

Our focus on Saccharomyces cerevisiae and cold shock is motivated by a number
of factors. These yeast have been studied extensively, especially their response to heat
shock, which occurs through the induction of heat shock proteins (Morano et al. 2012).
These heat shock proteins are universally conserved across all organisms and have
been very well characterized. However, the response to cold shock has been less well
studied, although its effects on cellular physiology are known (Thieringer et al. 1998;
Al-Fageeh and Smales 2006; Aguilera et al. 2007). Decreases in temperature cause
a reduction in membrane fluidity, a reduction in enzymatic activity, the stabilization
of DNA and RNA secondary structures, and the impairment of protein synthesis.
Similarly to heat shock, cold shock does induce the expression of a set of “cold
shock” proteins; however, these proteins are not universally conserved. Much remains
to be discovered about the molecular mechanisms and regulation of the response
to cold temperatures in yeast. The model we develop provides some new tools for
investigating the regulation of this response and provides new biological insight into
this phenomenon.

Biologically, computationally, and mathematically, parameter estimation remains a
significant challenge for the modeling of gene regulatory dynamics, even for medium-
scale networks of just 5–10 interacting genes, (Cao and Zhao 2008; Lillacci and
Khammash 2010; Kuwahara et al. 2013; Fan et al. 2015). The large number of para-
meters, the highly nonlinear dynamics of gene regulation, and the noisiness and relative
sparseness of time course microarray data make parametric inference a difficult prob-
lem requiring mathematical and numerical care. Our approach integrates numerical
solution of the ODE model, state-of-the-art optimization algorithms, and novel use of
penalization to infer parameters for a relatively large network with few temporal data
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points. Our results demonstrate that large-scale parameter estimation can be success-
fully performed for nonlinear dynamic gene regulatory networks using sparse, noisy
microarray data.

Our model involves a few key ingredients. One is a network of transcription factors
that activate or repress transcription of genes needed for the cell to respond to the cold
shock stress. The network itself can be thought of as a simple qualitative model in its
own right, and many investigators have explored the problem of network inference
from gene expression data (for a review see Hecker et al. 2009 and references therein).
Instead, we start with an experimentally defined network so that we can take the
next step of developing quantitative production and degradation dynamics for the
transcription factors involved in the cold shock response.

We then develop parameter estimation techniques for extracting rate parameter
information from time course microarray data obtained from cold shock experiments
to infer the direction (activation or repression) and magnitude of influence that regu-
latory transcription factors have on their target genes. Other models of this type have
either been developed on relatively simple small gene circuits (e.g., Cao and Zhao
2008) or have used data from biological systems that are already well understood
(e.g., the yeast cell cycle, Vu and Vohradsky 2007), so little new biological insight
is gained. The novelty of our approach is to take a problem where relatively little is
known about the biology and create a meaningful dynamical model of the system.
A number of methods have been proposed and implemented for fitting differential
equation models to data (see, e.g., Cao and Zhao 2008, for an excellent review).
In this paper, we discuss a penalized nonlinear least squares approach to parameter
estimation, which we have applied with success to a number of problems, ranging
from the dynamics of college drinking (Ackleh et al. 2009) and subsurface contam-
inant transport (Bailey and Fitzpatrick 1997) to inverse interferometry (Fitzpatrick
and Keeling 1997) and liquid chromatography (Fitzpatrick 1993). This approach has
largely been avoided in gene regulatory models due to its mathematical and numerical
complexity. The advantages of our approach over extended Kalman filtering (Lillacci
and Khammash 2010; Fan et al. 2015) or profiling methods (Cao and Zhao 2008) is
that appropriate treatment of the penalized least squares allows the estimation of a
fairly high-dimensional parameter from relatively sparse temporal data, a common
challenge with microarrays and other measurement technologies. Here we compare
the solution of the differential equations to microarray data from cold shock experi-
ments on S. cerevisiae, using penalized least squares in an innovative way, to extract
parameter estimates and determine the regulatory directions (activation or repression)
and the strengths of the regulatory relationships of controlling genes on targets in
a complex feedback network of 21 genes (nodes) and 31 regulatory relationships
(edges).

The paper is organized as follows. In Sect. 2, we describe the model organism S.
cerevisiae, the environmental stress of cold shock, and the determination of a regula-
tory network structure. The nature of the microarray data that we use for parameter
estimation is discussed in Sect. 3, while Sect. 4 is devoted to the mathematical model
and the estimation problem. Section5 provides the results of our parameter estimation
process. We close the paper in Sect. 6 with some concluding remarks that discuss the
results and suggest future directions.
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2 Regulation of the Response to Cold Shock in S. cerevisiae

As a single-celled eukaryote, budding yeast, Saccharomyces cerevisiae, must respond
to changes and stresses in the environment such as changes in nutrient or oxygen avail-
ability, changes in osmolarity, salinity, or pH, the presence of reactive oxygen species or
other damaging agents, and sudden or large changes in temperature, either an increase
(heat shock) or decrease (cold shock; Dawes 2004). Yeast respond to environmental
stresses through characteristic programs of gene expression, called the Environmental
Stress Response (ESR; Gasch et al. 2000; Causton et al. 2001). With the advent of
high-throughput, whole-genomemethods such asDNAmicroarrays, programs of gene
expression, including the ESR, have been elucidated as never before. These data are
key to developing a fundamental understanding of cell function. Mechanistic models
of gene regulatory networks that have been validated by experiment can then yield
additional insights. This paper details modeling and parameter estimation for a gene
regulatory network controlling the cold shock response in yeast.

Unlike the response to heat shock and other environmental stresses, the transcrip-
tional response to cold shock has been relatively lesswell studied in yeast. The previous
studies that exist have revealed that the response varies depending on the temperature
and the length of time spent at the cold temperature. The cold shock response occurs
between the temperatures of 10 and 18 ◦C (Sahara et al. 2002; Schade et al. 2004;
Tai et al. 2007), and the near-freezing response occurs between 0 and 10 ◦C (Kandror
et al. 2004; Murata et al. 2006). The early response occurs after 10min up to 2h of
cold temperatures, and the late response occurs after 12h of cold or near-freezing tem-
peratures (Kandror et al. 2004; Schade et al. 2004), although the exact transition time
between the early and late responses has not been definitively determined. However,
it is clear from these studies that the early and late responses represent two different
biological phenomena of first adaptation by the cells to the cold temperature, followed
by acclimation. These two distinct processes require the expression of different sets
of genes and different sets of regulatory transcription factors to regulate them. Indeed,
these studies revealed that the cold shock late response, but not the early response,
include the ESR genes induced by many environmental stresses. Through the use of
gene deletion experiments, Schade et al. (2004) and Kandror et al. (2004) also deter-
mined that the ESR genes in the late response to cold and near-freezing temperatures,
respectively, were regulated by the Msn2 and Msn4 transcription factors, as they are
during other environmental stresses. However, the transcription factors responsible
for the induction of the early response genes and the overall regulatory mechanism
governing this early response remain largely unknown. Furthermore, there is ample
evidence to suggest that environmental stress response pathways overlap, as is seen
by the induction of the same set of ESR genes under multiple stress conditions (Gasch
et al. 2000;Causton et al. 2001). Finally,DNAmicroarray experiments comparing gene
expression changes when the Leu3 transcription factor was deleted or overexpressed
has revealed that many genes that are not direct targets of that factor were affected
in the experiment due to indirect effects (Tang et al. 2006). These indirect effects are
most likely due to regulatory relationships between transcription factors. Thus, these
questions remain: (1) which transcription factors control the early response to cold
shock in S. cerevisiae? (2) what is the extent of ESR pathway overlap? (3) which part
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of the early transcriptional response to cold shock is due to indirect effects of other
transcription factors? To approach these questions, we need complementary types of
high-throughput genomic data, the tools of mathematical biology, and the perspective
of systems biology.

A great deal of research has focused on the empirical identification of the net-
work structure from microarray or other genomic data. An established method
called genome-wide location analysis, which uses chromatin immunoprecipitation
with epitope-tagged transcription factors followed by hybridization to DNA microar-
rays spotted with intergenic sequences (ChIP-chip), has determined the relationships
between transcription factors and the target genes they regulate on a global scale in
budding yeast (Lee et al. 2002; Harbison et al. 2004). Starting with the network of
106 transcription factors identified by Lee et al. (2002), we considered only those
transcription factors that had been previously annotated as involved in the ESR. We
also considered the transcription factors that regulated them and those that they regu-
lated, regardless of annotation. The confidence level of these regulatory relationships
reported by Lee et al. (2002) was p < 0.001. The largest connected cluster of nodes
became the gene regulatory network, comprised of 21 nodes and 31 edges. All of the
edges were confirmed with the data from a second genome-wide location dataset from
Harbison et al. (2004). The standard names for the transcription factors in the gene
regulatory network are listed in “Appendix”, along with their systematic names and
aliases from the Saccharomyces Genome Database (http://www.yeastgenome.org),
and the network structure itself is pictured in Fig. 1. Each node simultaneously repre-
sents the gene, the mRNA, and the protein. For the sake of simplicity, in the rest of the
paper, we will refer to the nodes as “genes” even though the node represents all three
entities. Each directed edge represents the regulatory relationship between two nodes.
This means that the transcription factor encoded by the gene at the originating node
either activates or represses expression of the gene at the recipient or target node. We
emphasize that the arrows do not denote activation here; rather, we are indicating the
directionality of regulation.

This graph contains a total of 21 nodes and 31 edges. Of the 21 nodes, 15 are reg-
ulated by at least one gene in the network. The in-degree and out-degree distributions
of the nodes are given in Fig. 2.

One observation from this histogram is that 6 nodes have in-degree 0, meaning that
those 6 nodes are not controlled by any of the genes in the network. Furthermore, four
of the nodes have out-degree 0, meaning that they do not control any of the genes in the
network. One gene, RAP1, has out-degree 5, making it influential to the most genes.
The gene YAP6 is influenced by 6 genes. Four genes show autoregulation: AFT1,
NRG1, RAP1, and YAP6. The deepest regulatory chain includes 5 nodes (originating
at SKN7), with 4-node chains originating at CIN5, MAC1, PHD1, SKN7, and YAP1.
Most nodes have a single input or are part of a simple regulatory chain, but several
participate in complex feedforward motifs (CIN5, ROX1, and YAP6; SKN7, YAP1,
and ROX1). Furthermore, there appears to be two distinct subnetworks (upper left and
lower right of Fig. 1) that are only connected through edges originating at ABF1 and
PHD1. This complexity of network structure makes it difficult to hypothesize up front
what the regulatory dynamics might be and necessitates use of a model to explicate
them.
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After defining the network topology, the next step in the modeling process is the
determination of the dynamics, including the signs (activation/repression) and the
influence magnitudes of the regulatory relationships. However, we first describe in
more detail the nature of the microarray data that we will use to infer parameters in
the model.

3 Cold Shock DNA Microarray Data

We are grateful to Babette Schade for providing the complete microarray dataset for
wild type yeast subjected to cold shock as published in Schade et al. (2004). In their
experiment, wild type Saccharomyces cerevisiae strain BY4743 grown at 30 ◦C in
rich YEPD medium was shifted to 10 ◦C. Samples were collected before cold shock
(t0), and after 10(t10), 30(t30), 120(t120) minutes, and 12 and 60h of cold shock.
We restricted our analysis to the first three cold shock timepoints because we are
specifically interested in the early response to cold temperatures in yeast. As discussed
in Sect. 2, there are substantial biological differences between the early and late cold
shock responses which would lead to substantial differences in the dynamics of the
early response which occurs on the timescale of minutes to hours and the late response
which occurs on the timescale of hours to days. The dataset we obtained had three
replicates for the t0 timepoint, seven replicates of the t10 timepoint, six replicates of
the t30 timepoint, and four replicates of the t120 timepoint. We assumed that each
replicate of the t0 timepoint consisted of a competitive hybridization of Cy3-labeled
cDNA derived from one culture grown at 30 ◦Cwith Cy5-labeled cDNA derived from
a different culture grown at 30 ◦C. We also assumed that the replicates of the t10, t30,
and t120 timepoints consisted of competitive hybridizations of labeled cDNA from
independently cold shocked cultures to labeled cDNA from control cultures grown at
30 ◦C. The data we obtained had already been subjected to within-chip normalization.
We performed the following manipulations on the data. The expression ratios (fold
changes) were log2 transformed. Between-chip normalization was carried out (see
Stekel 2003 for a detailed discussion of microarray normalization). Each replicated
measurement of log2 ratio (that is, each individualmicroarray chip)wasmean removed
and scaled by subtracting the average log2 ratio for all of the spots on the microarray
from each spot and dividing each spot by the standard deviation of all spots on the
microarray. For each gene at each timepoint we computed the average log2 ratio of the
replicate measurements to produce one data point, along with the standard deviation.
We also computed a modified t statistic to determine whether each average log2 ratio
was significantly different than zero and a p value based on the t statistic. We should
note that the variability and the small number of replicates make for tests that are not
very powerful. Table 1 shows the number and percentage of genes in the dataset with
significant changes in gene expression at three different p value cut-offs, p < 0.05,
p < 0.01, and p < 0.001. The t0 timepoint has very few genes with significant
changes in expression as would be expected when labeled cDNA from two control
cultures are hybridized against each other. However, the fact that 2.6% of the genes
did actually meet the p < 0.05 criterion for significant differential expression points
to the variability, both technical and biological, in this experimental system. The
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Table 1 Number and
percentage of genes with
significant changes in gene
expression at each timepoint for
three different p value cut-offs

Timepoint p value cut-off

p < 0.05 p < 0.01 p < 0.001

t0 170 (2.6%) 31 (0.48%) 1 (0.015%)

t10 822 (12.8%) 294 (4.6%) 72 (1.1%)

t30 785 (12.2%) 251 (3.9%) 42 (0.07%)

t120 1361 (21.2%) 522 (8.1%) 111 (1.7%)

other timepoints all have a greater number of genes showing a significant change in
expression than would be expected by chance using that particular p value cut-off,
except for the t30 timepoint at p < 0.001. This demonstrates that the yeast did indeed
respond to the cold shock treatment at 10 ◦C with changes in gene expression.

In Table 2, we provide the average log2 ratios and p values for the 21 genes in
our network. Notably, only nine genes in the network show significant changes in
gene expression at p < 0.05 at any timepoint. ABF1, FHL1, and HSF1 show signifi-
cant decreases in gene expression at one or more cold shock timepoints, and MAC1,
MSN4, RAP1, and RPH1 show significant increases in gene expression at one or more
cold shock timepoints. AFT1 and ROX1 have p < 0.05 for decreases in expression
observed at the t0 timepoint, when no change in expression is expected.

4 Mathematical Modeling of Regulatory Networks

Gene regulation can be modeled with a wide variety of mathematical structures at
many levels of resolution. Schlitt and Brazma (2007) review four levels at which gene
regulatory networks have beenmodeled: (1) parts lists, (2) topologymodels, (3) control
logicsmodels, and (4) dynamicmodels.Karlebach andShamir (2008) provide a similar
breakdown of gene regulatory modeling, into logical models, continuous models,
and single-molecule models. In many cases, trade-offs between the number of genes
included in themodel and the level of detail of themodel govern themodeling structure
that is chosen and applied. Parts lists and topology models concern themselves with
the identity and connectivity of genes in the model on the scale of the entire genome,
transcriptome, or proteome, while kinetic models often focus on small systems where
detailed experimental data are available (e.g., the OR control system of bacteriophage
lambda, Shea and Ackers 1985). In the case of the early cold shock response, we want
to scale down from the whole-genome topology model to more closely investigate a
smaller gene regulatory network. Because a master regulator for this response, akin
to HSF1 for heat shock, has not been identified for cold shock, our network must still
be large enough to include all potential regulators annotated as being involved in the
ESR. And because we want to discover the relative influence of this set of factors
and their activation/repression relationships, we want to investigate the dynamics of
the network. In short, to understand the cell’s early response to cold shock, we must
combine topology and dynamic models on a medium scale in a way that has predictive
power to understand the interactions in gene regulatory networks.
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Taking a step in that direction, we build a model of gene regulation that adds the
dynamics of transcription factor production onto their interaction network. Research
along these lines has applied differential equation structures (e.g., Alon 2007;
Wilkinson 2006; Vohradský 2001; Vu and Vohradsky 2007; Kauffman et al. 2003;
Climescu-Haulica and Quirk 2007; Chen et al. 2005, 1999; Blossey et al. 2008),
typically treating the problem as one of mass balance.

The basic balance concept is one of production and degradation. The equation

ẋi (t) = pi (x(t)) − di xi (t) (1)

in which the function pi gives the production rate, and the linear term di xi (t) is
the degradation rate, defines an in-flow, out-flow conservation principle for the level
of expression xi (t) over time. The functions pi will of course depend on expression
levels of all the genes controlling gene i . Commonly used structures for the production
functions include linear (Chen et al. 1999), quadratic (Angeli et al. 2009; Sontag 2007),
Michaelis-Menten (Alon 2007; Cao and Zhao 2008), and sigmoidal (Chen et al. 2005;
Mendoza and Xenarios 2006; Smolen et al. 2000; Vu and Vohradsky 2007). The form
of pi is thus a primary modeling issue.

The production function that we adopt here, based on a sigmoidal productionmodel
proposed in Vu and Vohradsky (2007), takes the general form

pi (x(t), θ) = Pi

1 + exp

(
−∑

j
wi j (x j (t) − τi j )

) (2)

inwhich Pi is themaximal rate of expression (i.e., the production rate at full production
activation), wi j is the interaction weight of gene j in regulating gene i , and τi j is
a threshold expression level at which production switches “on” and “off.” In this
functional form, the parameter θ captures the weights, thresholds, and possibly even
the baseline production rates.

We first note that the interaction network is contained in the weight parameters. If
the weightwi j is nonzero, then an edge connects the production of gene or node i with
the expression level x j . For example, the graph of Fig. 1 has 31 edges. We emphasize
that the network is a directed graph: the expression of transcription factor j may affect
that of i without the converse relationship necessarily holding. We also note that the
sign of the weight governs the type of relationship: positive weights correspond to
activation, while negative weights correspond to repression.

The functional formof the sigmoid S(u;w, τ) = 1/(1+e−w(u−τ)) onwhichEq. (2)
is based is more easily understood with a graph. In Fig. 3, we show the basic shape of
repression and activation production functions of the form S(w(u − τ)) versus u.

Roughly speaking, we think of production as turning on and off, depending on the
expression levels of activating and repressing transcription factors. Theweight governs
the “boundary layer” between on and off states, and the threshold governs the input
level at which the switch is thrown. For very large weights, the production function
approximates the unit step or Heaviside function with jump positioned at the threshold
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Fig. 3 Sigmoidal repression (top) and activation (bottom) functions

value. For an activator, expression levels above the threshold lead to production, while
expression levels below turn production off. Likewise, repressors turn production off
at higher-than-threshold levels and turn production onwhen expression levels decrease
below the threshold.

Generally speaking, the transient behavior of the system (1) must be determined
numerically. Long-time behavior issues, such as equilibria and their stability, are quite
difficult for systems of the size under study here: the specific example of cold shock
in yeast we discuss below involves 21 state variables. Our interest in this paper is in
the determination of parameters from data, so we do not undertake any analysis of
long-time behavior, other than to note that the work of Angeli et al. (2009) provides
an interesting approach to stability through the notion of a coherent system.

With a model of dynamic regulation in hand, we now turn to the determination of
parameter values for themodel. The systemof differential equationswe have presented
in (1) is a complex model with a large number of parameters. When considered in the
context of fitting thismodel tomicroarray data,which is expensive and time consuming
to collect, we must take great care in our parameter estimation procedures. Here we
discuss a number of issues associated with parametric dependence and parameter
estimation.

As discussed in Sect. 3, the microarray data we use provides a measurement of
the level of gene expression activity at the time of measurement relative to the initial
expression at t0.We denote by x̂ri (tk) the r th replicate observation of gene i expression
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level at time tk . The parameter identification process then becomes a problem of
comparing the model form

ẋi (t; θ) = Pi

1 + exp

(
−∑

j
wi j (x j (t; θ) − τi j )

) − di xi (t; θ)

to the observed data. Here we have explicitly included the dependence of the state
variable on the rate and network parameters, which comprise the vector θ .

The most common approach to the estimation of parameters for models such as our
gene regulatory network model is that of least squares. A form of nonlinear regression,
the least square approach compares model output to observed data and chooses the
parameter estimate by minimizing this discrepancy. In particular, the function

J (θ) =
R∑

s=1

NT∑
k=1

NG∑
i=1

∣∣log2 x̂ si (tk) − log2 xi (tk, θ)
∣∣2

is to be minimized, in which x̂ denotes observed expression levels from themicroarray
data, and x(t, θ) denotes the parameter dependent solution of the differential equation.
Here we are assuming R repetitions of the experiment, which is observed at times
tk, k = 1, 2, . . . , NT for all genes in the network (i = 1, 2, . . . , NG). We also note
the use of the log2 transform, which as noted in Sect. 3 is commonly applied to
microarray data.

This type of estimation problem has been studied by a number of investigators,
including the definitive text (Gallant 1987), the papers (Banks and Fitzpatrick 1990;
Fitzpatrick 2008) and the monograph (Huet et al. 2004).

We note that the model requires potentially a very large number of parameters. In
the “worst” case, if the regulatory network forms a connected graph with n nodes, then
there are n2 weights and n2 thresholds. While the number of parameters is a serious
concern, the difficulty in identifying the thresholds is perhaps the most significant
problem. Note that

∑
j

wi j (x j (t) − τi j ) =
∑
j

wi j x j (t) −
∑
j

wi jτi j =
∑
j

wi j x j (t) − bi ,

where

bi =
∑
j

wi jτi j

defines a new parameter, bi . We note that, for any choice of weights with at least two
being non-zero, there are an infinite selection of thresholds that would produce iden-
tical model dynamics, making the thresholds non-identifiable. Thus, for the purposes
of parameter identification, we reduce the thresholds down to the b parameters. This
parameterization was also used by Vu and Vohradsky (2007). While the individual
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threshold parameterization holds a slightly more intuitive meaning, in terms of the
expression level in each controller gene that “turns the switch,” the b parameter rep-
resents a “net threshold” at which the combined level of activities leads to switching.

We thus denote by θ the parameter vector θ = (w, b, P), in which the number of
individual w’s is governed by the total number of edges in the network, the number
of b’s is governed by the sum of the in-degrees of each node, and the number of P’s
is governed by the number of nodes. As noted in Sect. 2, our network involves 31
weights, 15 b’s, and 21 production rates.

Wedenote by θ̂ theminimizer of the least squares cost.Generally speaking, onemust
determine this minimizer numerically with an iterative optimization procedure. Some
theoretical results pertaining to the estimator, however, are available. For example,
statistical results from the references above pertain to modeling the observations. If
we assume that

x̂ si (tk) = xi (tk, θ
∗) + εsik,

where the errors εsik are zero mean, finite variance, independent and identically dis-
tributed random variables, then parameter estimator obeys a central limit theorem:

√
n

(
θ̂ − θ∗) ∼ N (0, �),

as n → ∞, where � = σ 2V−1 and σ 2 is the noise variance in the observations. The
matrix V is the sensitivity matrix, given by

V =
∑
i

t f∫
t0

∂xi
∂θ

(t, θ∗)∂xi
∂θ

T

(t, θ∗)dt

in which ∂xi
∂θ

denotes the gradient of gene i expression levels with respect to the
parameter vector and with the superscript T as its transpose. The asymptotic as stated
involves in-fill sampling in time, but other types of asymptotics are available (see, e.g.,
Banks and Fitzpatrick 1990; Fitzpatrick 2008; Gallant 1987). This matrix is related not
only to the covariance of the parameter estimator but also to the numerical conditioning
of the optimization procedure.

A more complex and robust approach to parameter estimation is Bayesian estima-
tion. In Bayesian statistical inference, one begins with a prior distribution, π . This
distribution quantifies our a priori information concerning the parameters. The second
component of the Bayesian approach is the conditional distribution of the measure-
ment, given the parameter, p(x |θ). Inference (e.g., estimation, hypothesis testing) is
performed through the posterior distribution, computed via Bayes’ formula:

π(θ |x) = p(x |θ)π(θ)∫
	

p(x |θ ′)π(θ ′)dθ ′ , θ ∈ 	.
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An interpretation of Bayesian analysis that is particularly appealing in applications
is that the prior and posterior represent quantifications of our uncertainty in parame-
ter values before and after experimental data has been collected. A full coverage of
Bayesian analysis, including philosophy, conceptual structure, analysis, and applica-
tion, is contained in the excellent text of Berger (1993).

Bayesianmaximum likelihood, in which one determines the parameter estimator by
maximizing the posterior density, corresponds to a type of penalized least squares. If
we assume, for example, that the errors εsik are zero mean normally distributed random
variables and that the prior is of an exponential family, π(θ) = C exp (−G(θ)), then
the negative of the log of the posterior is

− ln (π(θ |y)) =

S∑
s=1

NT∑
k=1

NG∑
i=1

∣∣log2 x̂ si (tk) − log2 xi (tk, θ)
∣∣2

2σ 2 + G(θ) − ln(C)

+ 1

2
ln(2πσ 2).

The last two terms in this expression are independent of the parameter and thus
irrelevant to parameter estimation. We may then take as our penalized least squares
criterion

J̃ (θ) =
S∑

s=1

NT∑
k=1

NG∑
i=1

∣∣log2 x̂ si (tk) − log2 xi (tk, θ)
∣∣2 + G(θ)

with the functionG representing our prior level of uncertainty in the parameter’s value.
The form of G is often taken to be a quadratic, an assumption equivalent to using a
normal prior. This approach to estimation is also called penalized least squares. In this
work, we use a quadratic G with a scaling factor α to control the relative role of data
noise and parameter sensitivity (where θ0 denotes our best a priori estimate, as well
as the prior mean):

J̃α(θ) =
S∑

s=1

NT∑
k=1

NG∑
i=1

∣∣log2 x̂ si (tk) − log2 xi (tk, θ)
∣∣2 + α |θ − θ0|2 .

The choice of the parameter α can be challenging, and there aremany approaches to
its selection, including cross validation (Golub et al. 1979) and the L-curve (Hansen
and O’Leary 1993), the technique we examine here. The L-curve method involves
the computation of a parametric plot of the least squares residual versus the penalty
term, parameterized by α. For each α, we compute the minimizer θ̂αof J̃α , and then

we compute J̃0(θ̂α) (the least squares residual error) and r(θ̂α) =
∣∣∣θ̂α

∣∣∣2 (the penalty).
In this procedure, we plot r(θ̂α) versus J̃0(θ̂α) for each α. Typically, this plot takes
the shape of an L, the corner of which is used to select an appropriate penalty level.
The additional computation required to perform the L-curve analysis pays signifi-
cant dividends in practice. Working from larger values of α to smaller ones aids in
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the numerical optimization, as the output of the more highly penalized optimization
provides an improved starting point for the less penalized one to follow.

In Sect. 5 below, we illustrate the penalized least squares and L-curve technique
with microarray data as published in Schade et al. (2004). Having reviewed the basic
concepts of dynamic modeling and parameter estimation, we turn to the specific prob-
lem of interest, inferring the regulatory dynamics of the early response to cold shock
in S. cerevisiae.

5 Issues of Parameter Estimation and Model Sensitivity

In considering the particular aspects of our 21-state model, we see that there are 21
production rate parameters, 21 degradation rate parameters, 31 weights, and 15 net
thresholds. Such a large number of parameters brings about a major challenge within
the context of the microarray data we are using, in which we have 3–7 replicates
reporting log2 fold changes in expression for each gene at 4 time points.

First, we will assume that the degradation rates are known or obtainable through
other means. To find the degradation rate, we used published protein half-life data
from Belle et al. (2006). We converted the half-life data values to the degradation
rates by taking the natural log of the half-life and dividing by 2 (Table 3). For several
transcription factors, the half-life data were not available, so we computed a median

Table 3 Degradation rates for
transcription factor proteins

a Genes for which a median
degradation rate was used for
missing values from Belle et al.
(2006) (CIN5, HSF1, MSN4,
HAL9)

Gene Degradation rate

ABF1 0.3466

ACE2 0.2310

AFT1 0.0301

CIN5 0.0272a

CUP9 0.0257

FHL1 0.0173

GTS1 0.0110

HAL9 0.0272a

HSF1 0.0272a

MAC1 0.0075

MSN1 0.0770

MSN4 0.0272a

NRG1 0.0693

PHD1 0.0495

RAP1 0.0165

REB1 0.0578

ROX1 0.0133

RPH1 0.0126

SKN7 0.0301

YAP1 0.0301

YAP6 0.0330
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of the half-life values for the other transcription factors, converted it and used that
value for those proteins. The median was based on the half-lives reported by Belle
et al. (2006) for 142 proteins for which there were data out of 203 proteins annotated
as transcription factors by Harbison et al. (2004).

The data we obtain frommicroarrays are in the form of expression relative to time 0
expression, xi (t) = mRNAi (t)/mRNAi (0), leading to theoretical initial values of 1 for
all expression levels in the dynamics. In all model simulations, we specify xi (0) = 1
for all genes. Moreover, were the system not cold shocked, we would expect it to be
in equilibrium at constant (relative) expression of 1 with no transcriptional regulation
occurring, i.e.,

∑
j

wi j − bi = 0. Thus, we would expect the non-cold-shocked system

to have threshold values for xi (t) equal to one, leading to the steady-state equations
of Pi

1+exp(0) − di ∗1 = 0, or Pi = 2di .

We do not use this approach to estimate production rates for the following reason:
several of the equations, associated with genes not receiving activation or repression
signals from within the network, are independent of the parameter estimation process.
Thus, these genes would be in steady state, and we could then drop them from the
dynamical system and estimation. We do find that this estimation approach does give
us a reasonable initial guess for any iterative optimization algorithm we apply to
minimize the penalized least squares cost. We emphasize that this produces an initial
guess for production rate parameters; it is not an initial condition for the dynamical
system, nor are any cold shock dynamics assumed or forced to be in steady state.

The data we use for the penalized least squares estimation come from the experi-
ments reported in Schade et al. (2004; see Sect. 3 and Table 2).

The least squares criterion takes the form

J̃α(θ) =
4∑

k=1

15∑
i=1

∣∣log2 x̂i (tk) − log2 xi (tk, θ)
∣∣2 + α |w|2 + α |b|2 + α |P|2 ,

in which we apply the L-curve method to determine an appropriate value for α. Our
numerical implementation in MATLAB (Release R2010a) uses the optimization tool-
box routine fmincon to perform the minimization. We use a constrained minimization
algorithm to maintain non-negative production rates. In producing this L-curve, we
start with a fairly large value of α, so that theminimization is dominated by the penalty.
Initial guesses for the weights are all set to 1, and initial guesses for the net thresholds
are set to 0. The production rates are initialized as discussed above. Once theminimiza-
tion iteration has reached numerical convergence, the resulting optimal parameters are
used to initialize the minimization for the next smaller penalty parameter. In Fig. 4,
we provide the L-curve obtained through this procedure.

The L-curve suggests three possible good α values to select. In Fig. 9 we compare
the weight, net threshold, and production parameter values for α = 0.02, 0.01, and
0.005. We selected the value α = 0.01 for the remainder of the analyses presented
below. In Figs. 5, 6 and 7, we show the dynamics of each gene’s expression. The solid
blue curve in each panel gives the model with the best fit parameters. The green circles
represent the data, and the red crosses provide a 95% confidence interval for the data.
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Fig. 4 L-curve analysis of Schade et al. (2004) data as fit to model. Values of α annotate the points

Genes without significant changes in expression (Table 2; Fig. 8) show little change
in dynamics over time.

The parameter estimates derived from the minimization are given in Table 4. The
electronic supplementary material is a zipped file containing the corresponding input
spreadsheet and output spreadsheet. The MATLAB code is available upon request.

Figure 8 shows the weights and experimental expression data displayed on the
network diagram.

We conducted a number of additional computations to explore the quality of these
estimates. First, we compared the estimated parameter values for several of the L-
curve runs. In Fig. 9, we plot the weights, net thresholds (b’s), and production rates
from three different penalty levels.

We see that the magnitudes of the parameters are different, but that the trends and
patterns agree for all α values in the penalized least squares estimation. The signs
of the weight and thresholds, in particular, stay the same, and the production rates
for a number of the genes are quite close. The parameter index is used for simplicity
of plotting: Table 5 connects the indexing with the genes for Fig. 9 and subsequent
figures (weight indexes are annotated on the edges of Fig. 1).

In a second test, we randomized the initial guesses for the iterative optimization
scheme. We ran the minimization routine using 10 different initial guesses for each
individual parameter. In the cases of the weights and thresholds, we sampled from a
standard normal distribution, and for the production rates (whichmust be nonnegative),
we multiplied the optimal production rates by a normal with mean 1 and standard
deviation 0.03, truncating to 0 if negative. Using the penalty parameter α = 0.01,
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Fig. 5 Genes ABF1, ACE1, AFT1, CIN5, CUP9, FHL1, GTS1, HAL9, HSF1 in the regulatory network:
best fit model dynamics and data. Relative expression level is plotted as Log2 fold change (ratio) over
time. The solid blue curve in each panel gives the model with the best fit parameters. The green circles
represent the data, and the red crosses provide a 95% confidence interval for the data. The upper point of
the confidence interval for ABF1 at t0 extends outside of the graphic coordinate limits

we found that the resulting optimal parameter values were quite stable. In Tables 6,
7, and 8, we provide the standard deviations of the randomly selected initial guesses
from the ten individual computations as well as the standard deviations of the resulting
estimated parameters.

As a final test of the estimation routine’s accuracy, we performed some tests using
model-generated data. We used the parameters in Table 4 to simulate data by solving
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Fig. 6 GenesMAC1,MSN1,MSN4,NRG1, PHD1,RAP1, REB1, ROX1,RPH1 in the regulatory network:
best fit model dynamics and data. Relative expression level is plotted as Log2 fold change (ratio) over time.
The solid blue curve in each panel gives the model with the best fit parameters. The green circles represent
the data, and the red crosses provide a 95% confidence interval for the data

the differential equation system (1). From the simulation, we used model-generated
data in 5, 10, and 20min time steps to conduct the penalized least squares fit, again
with α = 0.01. Figure 10 contains the resulting parameter estimates.

Since we have no a priori knowledge concerning the quality of the model or the
parameter values, we cannot say with certainty that our fit, as detailed in Figs. 5, 6,
and 7, and Table 4, are “correct” or even “close to the truth.” The additional tests of
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Fig. 7 Genes SKN7,YAP1, andYAP6 in the regulatory network: best fitmodel dynamics and data. Relative
expression level is plotted as Log2 fold change (ratio) over time. The solid blue curve in each panel gives
the model with the best fit parameters. The green circles represent the data, and the red crosses provide a
95% confidence interval for the data

randomized initial guesses and model-generated data lend confidence, however, to the
fit of the Schade et al. (2004) microarray data.

Afinal topic of interest along these lines is that of the sensitivitymatrix.As discussed
in Sect. 3 above, the matrix

V =
∑
i

t f∫
t0

∂xi
∂θ

(t, θ∗)∂xi
∂θ

T

(t, θ∗)dt

measures the sensitivity of the least squares minimization to the parameters. With the
parameterization under study, this matrix is of dimension 67 × 67. The large sample
asymptotic parameter covariance matrix � = σ 2V−1√

n
resulting from the parameter

estimation is illustrated in the heat map image of Fig. 11, which shows significant
uncertainty in the weight and net threshold parameter estimates. In Fig. 11, the para-
meters are indexed according to the “Full Index” given in Table 5. Thus, the indices
1–31 count the weight parameters, the indices 32–46 count the net thresholds, and the
indices 47–67 count the production rates (which clearly have the smallest uncertainty
levels.

A heat map image of the sensitivity matrix is dominated by the production rates,
and the image itself is not very illuminating. In Fig. 12, we show the eigenvalues and
the eigenvectors of the sensitivity matrix V . Some interesting patterns can be detected.

The eigenvectors in the image are ordered in terms of largest to smallest eigenvalues
(that is, from highest to lowest sensitivity). The eigenvectors Vi are ordered according
to decreasing eigenvalues (λi ≥ λi+1). Note that the first 21 eigenvectors have support
concentrated primarily in the production rate parameters (parameter indices 46–67,
of the Full Index of Table 5), indicating that the model is most sensitive to changes
in those parameters. The magnitude of the eigenvalues decreases dramatically as we
move from the first 21 eigenvectors to the next 25. In this group, some interesting
relationships can be observed.
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Fig. 8 Weights and experimental expression data displayed on the network diagram. The sign of the weight
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blunt, respectively) and edge color (magenta and cyan, respectively, or gray for weights near zero). The
magnitude of the weight is represented by the thickness of the edge; larger weights are represented by thicker
lines. The weight value is noted next to each edge. Each node is colored based on the Schade et al. (2004)
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was no significant change in expression at that timepoint, magenta if there was a significant increase in
expression, and cyan if there was a significant decrease in expression (p < 0.05). An interactive version
of this diagram can be viewed online at http://dondi.github.io/GRNsight/index.html

First, we note that Eigenvector 22 involves the state equation of NRG1. In Fig. 13,
we graphEigenvector 22, labeling the four significant parametric directions it contains.

The sensitivity is strongest with respect to the weight of SKN7 controlling NRG1,
slightly dependent on the self-control of NRG1, with opposite sign sensitivity for the
net threshold and the production rate. Eigenvector 23 shows a complex connection of
sensitivities in the ROX1, YAP1, and YAP6 dynamics (Fig. 14).

The weights corresponding to the indices 19–22, 24–31 are the controlling weights
for the dynamics of ROX1, YAP1, and YAP6, while indices 43, 45, and 46 correspond
to the net thresholds in those three genes.

To interpret these sensitivities, we note that YAP1, ROX1, andYAP6 form a densely
connected core in one sub-network (Fig. 1, upper left). Second, we observe that NRG1
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Table 4 Network weights, net thresholds, and production rates

Edge Weight Standard name b P

ABF1→FHL1 0.1562 ABF1 No inputs 0.4429

ABF1→MSN1 −2.9707 ACE2 No inputs 0.3798

ACE2→YAP1 −1.3615 AFT1 −0.1844 0.1712

AFT1→AFT1 −0.8966 CIN5 0.8638 0.0624

CIN5→MSN1 0.9393 CUP9 −0.0845 0.1052

CIN5→ROX1 −0.9278 FHL1 −0.0270 0.0209

CIN5→YAP6 −0.5312 GTS1 0.3180 0.0335

CUP9→YAP6 −0.1293 HAL9 No inputs 0.0446

HAL9→MSN4 1.4283 HSF1 2.0785 0.0396

HSF1→REB1 −0.0102 MAC1 No inputs 0.0257

MAC1→CUP9 −0.1882 MSN1 0.3085 0.1860

MSN4→FHL1 0.6121 MSN4 0.5977 0.1312

NRG1→NRG1 1.2341 NRG1 0.9144 0.2078

NRG1→YAP6 0.6215 PHD1 No inputs 0.1302

PHD1→CUP9 −0.6510 RAP1 −0.0836 0.0548

PHD1→MSN4 0.5447 REB1 −0.1967 0.1338

RAP1→AFT1 −0.4030 ROX1 −0.0185 0.0461

RAP1→HSF1 −1.2321 RPH1 −1.0935 0.6910

RAP1→MSN4 1.0131 SKN7 No inputs 0.0999

RAP1→RAP1 −0.8890 YAP1 1.5146 0.1742

RAP1→RPH1 1.4999 YAP6 0.3528 0.0790

REB1→GTS1 0.0778

ROX1→YAP6 −0.7503

SKN7→NRG1 −0.1852

SKN7→ROX1 0.5744

SKN7→YAP1 −0.4082

YAP1→ROX1 −0.4315

YAP1→YAP6 0.0146

YAP6→CIN5 −0.0450

YAP6→ROX1 −0.5071

YAP6→YAP6 −0.3027

The “no inputs” designation indicates that there is no regulatory influence on these genes and therefore no
input value for the corresponding net threshold parameter (see Fig. 1; “Appendix”)

is a controller of YAP6with a fairly large positive weight (indicating activation), while
four other genes controlling YAP6 are repressing, and the final sixth gene (YAP1)
slightly activates YAP6 at a near-zero level almost two orders of magnitude below the
activation ofNRG1.Of these four genes, onlyROX1 shows a significant change in gene
expression (p < 0.05 at t0; see Table 2 and Fig. 8). The others do show fluctuations in
expression (Table 2; Figs. 6, 7), but none of the log2 ratios are significantly different
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Fig. 9 Weight (top), b (middle), and production rate (bottom) parameter comparisons for α = 0.02 (black),
0.01 (blue), and 0.005 (red) from penalized least squares estimation.Weight,wi j , (top panel), net threshold,
bi , (middle panel), and production rate, Pi , (bottom panel)

than zero. Thus, the regulatory weights must balance each other out to conform to the
observed levels of expression.

6 Concluding Remarks

We have presented a general approach to modeling medium-scale gene regulatory
networks, with an emphasis on the ability to extract parameters from data obtained
from microarray experiments. Our findings are that a high-dimensional parameter
vector in a complex high-dimensional dynamic networkmodel can be reliably inferred
from temporally sparse microarray data using a penalized least squares approach. The
resulting dynamics are not, however, calibrated to units of concentration in mass
balance, due to the relative nature of two-color microarray measurement technology.
Furthermore, our model does not separate rates of mRNA and protein production or
degradation. Themodel starts with a network topology and extracts relative strength of
relationships, direction (activation/repression) of relationships, and rate of expression.
The magnitude of the parametric uncertainties, as measured through the covariance,
are large enough to preclude the use of this approach in extracting the network topology
from data at this coarse level of time resolution, so the techniques described herein
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Table 6 Standard deviations of
initial guess and resulting
estimates of network weights,
wi j , for 10 penalized least
squares computations

Edge σ (initial guesses) σ (estimates)

ABF1→FHL1 1.0763 0.000042

ABF1→MSN1 1.0452 0.000052

ACE2→YAP1 0.9139 0.000026

AFT1→AFT1 1.1592 0.000016

CIN5→MSN1 1.2506 0.000036

CIN5→ROX1 0.7353 0.000017

CIN5→YAP6 1.1986 0.000016

CUP9→YAP6 0.7908 0.000022

HAL9→MSN4 1.0100 0.000017

HSF1→REB1 0.8139 0.000010

MAC1→CUP9 1.0182 0.000023

MSN4→FHL1 0.6676 0.000023

NRG1→NRG1 1.0921 0.000033

NRG1→YAP6 1.0962 0.000021

PHD1→CUP9 1.3703 0.000013

PHD1→MSN4 1.1003 0.000033

RAP1→AFT1 0.9236 0.000003

RAP1→HSF1 1.1732 0.000003

RAP1→MSN4 0.6783 0.000014

RAP1→RAP1 0.8165 0.000013

RAP1→RPH1 0.4716 0.000007

REB1→GTS1 0.9366 0.000006

ROX1→YAP6 0.7266 0.000034

SKN7→NRG1 1.1707 0.000021

SKN7→ROX1 1.1959 0.000014

SKN7→YAP1 0.7284 0.000006

YAP1→ROX1 1.0836 0.000011

YAP1→YAP6 0.7664 0.000016

YAP6→CIN5 0.9739 0.000010

YAP6→ROX1 0.8421 0.000033

YAP6→YAP6 0.7260 0.000020

must be used in conjunctionwith othermethods, either statistical clustering approaches
or additional experiments, to identify the network connections. We are confident,
however, in the utility of this approach to refine the dynamics and directionality of a
candidate regulatory graph, which should have general applicability to other biological
problems where time course gene expression data are available.

Biologically, the estimated model parameters have shed light on the regulation of
the early transcriptional response to cold shock in S. cerevisiae for which we had three
questions: (1) which transcription factors control the early response to cold shock in
S. cerevisiae? (2) what is the extent of ESR pathway overlap? (3) which part of the
transcriptional response to cold shock is due to indirect effects of other transcription
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Table 7 Standard deviations of
initial guess and resulting
estimates of network net
threshold parameters, bi , for 10
penalized least squares
computations

Standard name σ (initial guesses) σ (estimates)

AFT1 0.6738 0.000018

CIN5 0.9264 0.000051

CUP9 0.8543 0.000040

FHL1 1.1391 0.000026

GTS1 0.7422 0.000022

HSF1 0.8225 0.000013

MSN1 0.7975 0.000028

MSN4 0.6201 0.000013

NRG1 0.6809 0.000087

RAP1 1.2942 0.000032

REB1 1.3605 0.000028

ROX1 0.8758 0.000013

RPH1 1.2564 0.000040

YAP1 1.0017 0.000022

YAP6 0.7664 0.000012

Table 8 Standard deviations of
initial guess and resulting
estimates of production, Pi ,
rates for 10 penalized least
squares computations

Standard name σ (initial guesses) σ (estimates)

ABF1 0.0182 0.000000

ACE2 0.0117 0.000000

AFT1 0.0021 0.000001

CIN5 0.0011 0.000002

CUP9 0.0014 0.000005

FHL1 0.0012 0.000001

GTS1 0.0005 0.000000

HAL9 0.0015 0.000000

HSF1 0.0019 0.000000

MAC1 0.0005 0.000000

MSN1 0.0038 0.000011

MSN4 0.0016 0.000002

NRG1 0.0033 0.000012

PHD1 0.0028 0.000000

RAP1 0.0016 0.000001

REB1 0.0030 0.000002

ROX1 0.0008 0.000001

RPH1 0.0012 0.000032

SKN7 0.0007 0.000000

YAP1 0.0014 0.000002

YAP6 0.0025 0.000002
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factors? First, the Schade et al. (2004) expression data and inferred network weights
(Tables 2, 4) suggest that the subnetwork of transcription factors centered aroundRAP1
and including FHL1,MSN4, RPH1, and HSF1 plays a prominent role in the regulation
of the cold shock response (Fig. 8, lower right). This makes sense biologically because
RAP1 and FHL1 are responsible for activating genes encoding ribosomal proteins,
and ribosome biogenesis is a biological process known to be induced by cold shock
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Fig. 14 Eigenvector 23 shows the combined sensitivity to Parameters 19–22, 24–31, 43, 45, and 46. The
x axis refers to the parameter Full Index from Table 5

(Aguilera et al. 2007; Xiao and Grove 2009). RAP1 acts as both an activator and
repressor in themodel and is known to have both transcriptional activator and repressor
activity in the cell (Shore and Nasmyth 1987). RAP1 strongly activates MSN4 and
RPH1 in our model, both of which have significant changes in gene expression in the
Schade et al. (2004) data. Indeed, all three inputs to MSN4 activate it. Both MSN4
and RPH1 bind to stress response elements (STRE) in approximately 200 genes, the
activation of which constitutes the general ESR (Gasch et al. 2000; Causton et al.
2001; Orzechowski et al. 2012). FHL1 is weakly activated by both MSN4 and ABF1.
Because ABF1 itself is down-regulated, the main activating influence comes from

123



Parameter Estimation for Gene Regulatory Networks from… 1487

MSN4.However, FHL1 itself is down-regulated, so theremust be another transcription
factor outside this network that influences its expression. RAP1 also strongly represses
HSF1, which is significantly downregulated in expression. HSF1 is responsible for
inducing genes required for the heat shock response (Morano et al. 2012). There is
some evidence to suggest that the cold shock response has some “opposite” effects
than the heat shock response, so the down-regulation of HSF1 makes sense (Gasch
et al. 2000; Schade et al. 2004). Thus, our model indicates that further examination of
the roles of RAP1, FHL1, MSN4, RPH1, and HSF1 in regulating the early response
to cold shock is warranted.

In contrast, the other subnetwork, (upper left of Fig. 8, including ACE2, CIN5,
MSN1, NRG1, ROX1, SKN7, YAP1, and YAP6) appears to play less of a role in
controlling the early cold shock response as there are few significant changes in gene
expression in that part of the network. If theweights of the incoming edges are summed
for each gene, they are all negative except for the weights controlling NRG1. Even
though the weights of CIN5 and ABF1 controlling MSN1 are among the largest in
magnitude in the entire network, they have opposite effects. CIN5 strongly activates
MSN1, while ABF1 strongly represses it with the sum of the weights being negative;
however, from the data, we see that the expression of MSN1 is unchanged.

Second, in terms of ESR pathway overlap, RAP1, FHL1, MSN4, RPH1, and HSF1
have all been implicated in controlling the response to other environmental stresses
(Gasch et al. 2000; Causton et al. 2001; Morano et al. 2012; Orzechowski et al. 2012;
Xiao and Grove 2009). Our model suggests that there is overlap between the general
ESR and the early response to cold, not just the late cold response as noted in Schade
et al. (2004) and Kandror et al. (2004).

Third, as for the indirect effects of transcription factors, as noted in Sect. 2, our
network has regulatory chains that are 4 or 5 nodes deep and two complex feedforward
motifs. However, it appears that the influence of transcription factors in a regulatory
chain peters out after just one or two nodes. For example, RAP1 strongly influences
HSF1 and MSN4, but the influence of HSF1 upon REB1 and MSN4 upon FHL1 are
much weaker. Furthermore, as has already been noted, there is evidence to suggest that
additional transcription factors not included in our network are necessary to explain the
expression of the genes in our network. For example, RAP1 is found to repress itself
in the model, even though it shows a significant increase in expression after 120min
of cold exposure, so there must be another transcription factor activating it that was
not included in this network. FHL1 is significantly downregulated in expression, but
its regulators ABF1 and MSN4 only weakly activate it, suggesting that FHL1, too,
is repressed by an additional factor outside the current model. The significant down-
regulation in the expression of ABF1 in the data, together with the fact that there
are no predicted gene regulators for ABF1 in the current network, suggests that this
must be due to some other transcription factors outside this network. Finally, MAC1
also shows a significant increase in gene expression at the t120 timepoint, but is also
not regulated by any transcription factors in the current network, necessitating the
invocation of other regulators.

The results of this model suggest several lines of future investigation, both experi-
mentally and computationally. The model highlights the role of RAP1, FHL1, MSN4,
RPH1, and HSF1 in regulating the early response to cold shock. A natural next exper-
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iment would be to investigate how the early response to cold shock is affected by
the deletion of those genes. Unfortunately, RAP1, HSF1, and FHL1 are all essential
genes in yeast, making the simple knockout experiment impossible (Winzeler et al.
1999). However, MSN4 and RPH1 are not essential and could be investigated in such
a way. Although Schade et al. (2004) did perform microarray experiments on a strain
deleted for both the MSN2 and MSN4 transcription factors, they only performed two
replicates with the double deletion strain, precluding statistical analysis of the data
that would indicate its reliability for use in estimating model parameters, and leav-
ing additional experiments to be performed. Such biological knockout experiments
could then be complemented by in silico knockouts where parameter estimation and
forward simulations are performed using networks with the appropriate transcription
factors removed. A comparison of the experimental and computational results could
lead to refinements of the model and further biological insights. However, given that
it appears that ABF1, FHL1, MAC1, and RAP1 are regulated by transcription factors
not included in our network, a new network would need to be defined that includes
those potential regulating factors. To our knowledge, genome-wide location analysis
has not been performed under cold shock conditions, so important network connec-
tions could be missing from the currently available experimental data, necessitating
other approaches for defining the regulatory network.

In conclusion, we have successfully estimated model parameters from microar-
ray data for a medium-scale gene regulatory network using a penalized least squares
approach. The results accurately model the expression dynamics, have revealed acti-
vation and repression relationships between the transcription factors in our network,
and suggest which factors are most important to the regulation of the early response
to cold shock in S. cerevisiae. Our work provides a firm mathematical foundation and
specific biological suggestions with testable hypotheses for future systems biology
iterations of modeling and experiment regarding the cold shock response in yeast.
Finally, our work has general applicability to other biological systems.
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