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We simulate the effects of different types of noise in state preparation circuits of variational
quantum algorithms. We first use a variational quantum eigensolver to find the ground state of
a Hamiltonian in presence of noise, and adopt two quality measures in addition to the energy,
namely fidelity and concurrence. We then extend the task to the one of constructing, with a layered
quantum circuit ansatz, a set of general random target states. We determine the optimal circuit
depth for different types and levels of noise, and observe that the variational algorithms mitigate
the effects of noise by adapting the optimized parameters. We find that the inclusion of redundant
parameterised gates makes the quantum circuits more resilient to noise. For such overparameterised
circuits different sets of parameters can result in the same final state in the noiseless case, which
we denote as parameter degeneracy. Numerically, we show that this degeneracy can be lifted in the
presence of noise, with some states being significantly more resilient to noise than others. We also
show that the average deviation from the target state is linear in the noise level, as long as this
is small compared to a circuit-dependent threshold. In this region the deviation is well described
by a stochastic model. Above the threshold, the optimisation can converge to states with largely
different physical properties from the true target state, so that for practical applications it is critical
to ensure that noise levels are below this threshold.

I. INTRODUCTION

The rapid development of noisy intermediate-scale
quantum (NISQ) computers [1] in recent years has seen
the equally explosive rise of hybrid variational quantum
algorithms (VQAs) [2–10]. VQAs are composed of a
quantum subroutine embedded into a classical optimi-
sation loop [2, 3, 11]. The quantum side of the algorithm
consists of a quantum state preparation stage (or ansatz)
with externally controllable parameters, and a measure-
ment stage that returns the value of a cost function from
the prepared quantum state. The classical loop is typ-
ically a gradient descent optimiser, which updates the
parameters in order to minimise the cost function.

VQAs hold much promise for immediate application to
NISQ era devices, not just because they do not require
large qubit counts to be useful, but also because they are
expected to offer some resilience to the noise that char-
acterizes these devices [11–17]. It has been shown that
VQAs can automatically compensate for coherent errors,
such as over-/under-rotations [3, 14, 18]. This stems di-
rectly from the variational nature of VQAs, as errors that
only shift the position of the cost function minimum do
not affect the outcome of the optimisation [3]. The re-
silience of VQAs to decoherent noise has proved more
difficult to characterize, although there is some theoret-
ical evidence that they offer partial resilience to more
general stochastic errors [14, 15]. Variational compiling
has been shown to be robust against a noise model con-
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taining gate and readout noise [13]. There further exist
several methods for error mitigation, which allow to re-
move some unphysical states [15, 19–23]. However, it is
widely believed that there exists a hard limit to the re-
silience to decoherent noise of VQAs. Recently it has
been shown that noise in the state preparation circuit
leads to an asymptotic flattening of the cost function
landscape [24]. This phenomenon reflects an accumula-
tion of decoherent errors that ultimately makes the opti-
mization untrainable. The result is valid in the limit of
deep quantum circuits, while there remains an interme-
diate regime in system size and circuit depth, in which
VQAs can be run successfully. The understanding of the
impact of noise in this intermediate regime remains lack-
ing, and is the question that we address in this paper.
We evaluate quantitatively how specific models of quan-
tum noise impact the performance of simulated VQAs,
and to what extent this can be mitigated by the circuit
design and optimisation strategy.

The paper is divided into two main parts: the simula-
tion of a variational quantum eigensolver (VQE) and a
more general variational algorithm that aims at maximis-
ing fidelity with a random target state. For the former,
we study the effect of varying the circuits and in partic-
ular the effect of adding redundant parameterised gates
in presence of noise. As measures of quality we track the
energy, fidelity and entanglement of the prepared state.
For the latter, we employ a hardware-efficient ansatz [25],
where the circuit is composed of a layer repeated several
times. We present numerical results without and with
noise-aware parameter optimisation, for various noise lev-
els and number of layers in the circuit. We find that
VQAs can partly mitigate for quantum noise in the state
preparation circuit by optimizing the parameters in pres-
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ence of noise, and demonstrate that the inclusion of re-
dundant parameters, which in the noiseless case results
in degenerate sets of parameters with equal energy, can
lead to states with higher resilience to noise.

Finally, we find that for low noise levels the noise prop-
agation in a VQA circuit targeting a random state is well
described by a stochastic model. In this regime, the noisy
state is a linearly modified form of the exact state. How-
ever, in some situations there exists a circuit-dependent
noise threshold, above which the optimisation in presence
of noise can lead to different states with potentially very
different physical properties, such as their entanglement.
For practical applications it is important to characterise
this threshold in order to ensure that the noise is within
the linear regime.

II. METHODS

A. Variational quantum algorithms

Mathematically, the ansatz of a VQA can be seen as
a parameterised unitary operator U(θ), with the vector
θ representing the used parameters, that is applied to
a fixed initial state ρ0 to yield a desired output state
ρ(θ) = U(θ)ρ0U(θ)†. Here we use density operators ρ
to represent quantum states, as they can represent both
pure and mixed states. Equivalently, we can associate
to the unitary a superoperator U(θ)ρ := U(θ)ρU(θ)†.
In terms of superoperators the overall quantum circuit
operation can be written as

ρ(θ) = U(θ) (ρ0) = UL(θL)UL−1(θL−1) · · · U1(θ1) (ρ0),
(1)

where each unitary is parameterised by a set of parame-
ters.

The cost function, C(θ), typically corresponds to the
expectation value of an operator O for the prepared state.
The classical optimiser then attempts to find the mini-
mum of the real-valued cost function

C(θ) = Tr[O ρ(θ)]. (2)

Eqs. (1) and (2) encapsulate the unitary dynamics of
a closed system representing a noiseless quantum com-
puter. In our work we simulate this on a classical ma-
chine, which can be achieved by representing the opera-
tors in the equation as matrices and performing the op-
erations numerically.

B. Noise model

A real quantum computer is an open quantum system,
as it cannot be perfectly separated from its surroundings,
and interactions with the environment cause deviations
from unitarity, known as decoherence. Therefore, our ba-
sic unitary evolution needs to be expanded with a noise

model. We use the broad term quantum channel to de-
scribe both unitary and non-unitary dynamics, and when
the channel is non-unitary it is termed a noisy quantum
channel [26].

We construct the model by interleaving noiseless oper-
ations and noisy quantum channels that aim to replicate
decoherent processes in quantum computers. Indicating
the effect of noisy quantum channels as Λl, with the in-
teger l indexing the specific channel, Eq. (1) is modified
to

ρ(θ) = ΛLUL(θL)ΛL−1 · · ·Λ1U1(θ1) (ρ0). (3)

We use identical noise channels throughout the circuit
evaluation. Each of these spans all the qubits in the
system, and is defined as the application of an identical
one-qubit noise channel to every qubit:

ρ = Λ (ρin) =

(
N⊗
i=1

Λ(i)

)
(ρin), (4)

where Λ(i) is the one-qubit channel acting on the ith

qubit, ρin is the input state and N is the number of
qubits. This is termed a product channel [27]. The same
approximation is used in Ref. [28], and is valid when
qubits are sufficiently separated physically and there is
only small cross-talk. Note that for simplicity we have
also assumed that the noise is identical on every qubit,
however in general the qubits of a real quantum com-
puter have noise characteristics that can differ signifi-
cantly from one another [29]. In our approach we neglect
cross-talk and coherent errors, as our main focus is on
decoherent noise channels. Similarly, we do not consider
readout noise, even though this is an important feature
of real quantum devices[29]. The justification for this
choice is that readout noise is independent from ansatz
design, while the main question of this paper is to ad-
dress the effect of a noisy ansatz itself. We also neglect
finite sampling (shot) noise, which allows us to employ
exact statevector simulations.

We consider three types of noise channels: amplitude
damping, phase damping, and symmetric depolarising
channels. Amplitude damping relates to the relaxation of
the qubit from an excited state to its ground state, while
phase damping to the loss of phase, perturbing the off-
diagonal elements of the density matrix [30]. Two com-
mon metrics of qubit quality, the longitudinal relaxation
(T1) and dephasing (T2) times, can be related directly
to amplitude and phase damping [31–33]. Symmetric de-
polarising noise describes a decay to a completely mixed
state, and hence is useful as a prototypical decoherent
channel [30].

We make use of the Kraus operator formalism to ap-
ply these channels onto the quantum state, which carries
the premise that quantum noise is a Markovian process
[30]. In our implementation, the operators are param-
eterised by γ ∈ [0, 1], representing the strength of the
noise. A value of 0 represents no noise (and hence an
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identity channel), while a value of 1 is maximal in the
sense that the output of the noise channel corresponds
to the fixed point of the channel. For amplitude damp-
ing, this is the state |0〉〈0|, for dephasing it is any linear
combination of |0〉〈0| and |1〉〈1|, and for symmetric de-
polarising it is the completely mixed state. In Appendix
A we provide the single-qubit Kraus operators used for
the noise model, as well as details on how to obtain the
product channel operators.

As a simplification we apply noise only on two-qubit
gates. This is justified by physical considerations valid
for most hardware systems, where 2-qubit operations are
considerably slower than the 1-qubit ones, and have a
much higher noise rate, usually by an order of magni-
tude in their gate fidelity figures [34]. Consistently with
previous work [28, 35], we place a noisy channel after the
gate, ensuring that at maximum noise the state output by
the circuit will be unentangled even for non-depolarising
noise channels like phase and amplitude damping.

C. Quality measures

We investigate two classes of variational quantum algo-
rithms: VQE, where the energy is minimised, and target
state optimisation, where the infidelity with respect to a
random target state is minimised.

1. VQE simulations

As first system we examine the VQE, the prototypical
example of VQA [2], and the results are presented in
Sec. III. The VQE algorithm seeks to identify the ground
state of a given Hamiltonian H. The cost function of the
VQE is determined by setting O = H in Eq. (2), which
returns the energy of the trial state:

C(θ) = E(θ) := Tr [Hρ(θ)] . (5)

Besides the energy of the state, to assess the quality of
the output after convergence we also consider the fidelity
with respect to the exact ground state of H. The fidelity
between two general states ρ and σ is defined as [36]

F (σ, ρ) :=

(
Tr
√√

ρ σ
√
ρ

)2

= Tr [σρ] , (6)

where the last equality is valid whenever one of the two
states is pure. If we denote the exact ground state as
|ψgs〉, the fidelity for a parameterised ansatz circuit cor-
responds to

F (θ) := Tr [|ψgs〉〈ψgs| ρ(θ)] = 〈ψgs| ρ(θ) |ψgs〉 , (7)

where ρ(θ) is obtained with Eq. (3).
Finally, since in VQE we are almost exclusively inter-

ested in Hamiltonians with entangled ground states, we

use entanglement as a further important test of the qual-
ity of the output state. If we have a 2-qubit system, there
exists a broad selection of measures of bipartite entangle-
ment. Since the noisy circuit produces mixed states, we
choose one that is valid in this regime, namely the con-
currence, Q(ρ) [37]. The concurrence is frequently used
in literature, as it is monotonically related to entangle-
ment of formation, a meaningful measure of entangle-
ment, while being easier to calculate in practice [38–40].
It has the closed form

Q(ρ) := max(0, λ1 − λ2 − λ3 − λ4). (8)

Here λi are the eigenvalues, in decreasing order, of
the Hermitian matrix

√√
ρρ̃
√
ρ (note the similarity to

Eq. (6)), where ρ̃ is the spin-flipped density matrix
(σy ⊗ σy)ρ∗(σy ⊗ σy), with ∗ indicating complex conju-
gation. Q(ρ) = 0 if and only if ρ is a linear combination
of product states, and Q(ρ) = 1 if and only if ρ is a Bell
state [41].

When working with larger qubit numbers we cannot
directly apply concurrence. Out of the several possible
measures of multi-qubit entanglement[42], we choose the
maximum concurrence taken over all pairs of qubits in
the system [43, 44].

2. Random target state fidelity optimisation

In the second part of the article we investigate how
noise affects a variational algorithm for solving a more
general task. The results are presented in Sec. IV.
We consider random state fidelity optimisation, where,
rather than choosing a specific Hamiltonian and evaluat-
ing its ground state, we select at random a wavefunction
as target. We address the question of how closely a lay-
ered quantum circuit can approximate such a general tar-
get wavefunction under different noise regimes. The op-
timisation procedure is therefore modified to maximising
the fidelity (see Eq. (6)) with a target state ρT. Equiva-
lently, the problem can be formulated as a minimisation
of the infidelity, defined as

R := 1− F, (9)

and hence the cost function is

C(θ) = R(ρT, ρ(θ)) := 1− F (ρT, ρ(θ)). (10)

We consider pure target states, so that the cost function
given in Eq. (2) can be applied in this case by choosing
O = 1− ρT.

We then extend this to the case where one is provided
with a set of nT pure target states sampled from a uni-
form distribution. As figure of merit we use the average
optimal infidelity over the set, which we define as

R̄ =
1

nT

nT∑
n=1

min
θ
R(ρT,n, ρ(θ)), (11)



4

where ρT,n is the target state with index n. The same
measure has been used recently in Ref. [45]. For each
target state, an optimisation procedure is run in presence
of noise. R̄ = 0 would imply that the quantum circuit
can represent any N -qubit state in the ensemble exactly.
The addition of noise is expected to increase R̄, as mixed
states cannot have perfect overlap with pure states. As
the distribution of target states, we consider the Haar
distribution over real states, which is the unique uniform
distribution over a space of pure quantum states [46].

We perform two types of numerical simulations: in
the first, we optimise the circuit without noise to ob-
tain the optimal ansatz parameters for the ideal case,
but evaluate the infidelity using the noisy circuit (“non-
reoptimised”); in the second type we start from the noise-
less optimum, but then reoptimise the circuit by perform-
ing gradient descent with the noise channels in place (“re-
optimised”). The non-reoptimised cost function provides
an upper bound to the reoptimised cost function, and the
two will be equal only if the location of the minimum is
unaffected by noise.

Finally, in order to isolate the effect of noise from other
contributions to the infidelity, we consider the average
optimal relative infidelity, which we define as

R̄rel := R̄− R̄id, (12)

where the subscript id indicates the infidelity evaluated
in the ideal noiseless case.

III. VQE FOR ENERGY MINIMISATION

In this section we employ VQE for the task of identify-
ing the ground state energy of a fermionic Hamiltonian,
first for 2 and then for 4 qubits.

A. Two qubit system

We consider the following Hamiltonian on two qubits:

Ĥ = σ̂1
z σ̂

2
z + σ̂1

x + σ̂2
x. (13)

This is an example of a transverse-field Ising Hamilto-
nian [47], and appears in this form in dynamical mean
field theory (DMFT) simulations of the single-impurity
Anderson model (SIAM) for its 2-electron ground state
[48]. Since this minimal Hamiltonian has an entangled
ground state, it forms an ideal starting point for the in-
vestigation of the effect of noise. As will be shown in the
subsequent sections, the conclusions found here are ap-
plicable also to wavefunctions obtained with more com-
plicated Hamiltonians. Furthermore, as the Hamiltonian
is real, we can restrict our choice to just those circuits
that always output a real wavefunction, enabling us to
significantly reduce the number of parameters.

As ansätze we choose the three circuits shown in Fig.
1, each of which can be shown analytically to be able

Λ

Λ

Λ

Λ

Λ

Λ

FIG. 1: Circuit ansätze used for state preparation on two
qubits. Circuits (a) and (b) have 3 rotation parameters, and
the circuit in (c) has 4 rotation parameters. In the noiseless
case they all allow to cover the full real-states space of two
qubits, and hence allow to construct any real 2-qubit state.
There is one noise channel applied after the CNOT gate, as
indicated by the Λ blocks on each qubit.

to prepare any possible real 2-qubit state. These ansätze
include two inequivalent 3-parameter circuits, termed cir-
cuit (a) and (b), which differ on the position of the final
rotation gate. We also consider a 4-parameter circuit that
has rotations on both qubits before measurement. This
latter circuit is over-parameterised, since it has one extra
parameter compared to the previous two, and therefore
allows us to explore the impact of redundant parameters.

The VQE algorithm is implemented using an exact
density matrix simulator, which allows the use of a
gradient-based classical optimiser, specifically the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) optimiser in our
case [49–52]. The algorithm is evaluated on a range of
γ ∈ [0, 1], for phase, amplitude damping and symmetric
depolarising noise, for all the ansatz circuits. As outlined
in Sec. II B and Appendix A, γ is the parameter of the
noise model that encodes the strength of the noise.

Analytically we calculate the exact ground state en-
ergy to be Egs = −

√
5 ≈ −2.236, and the concurrence

to be Qgs = 1√
5
≈ 0.447. We verified that the numer-

ical simulations with our used ansätze reproduce these
analytical results exactly for γ = 0. The outcome of the
noisy VQE simulation is shown in Fig. 2 for all state
preparation circuits of Fig. 1. Straight away, we no-
tice clear differences between the noise channels. In all
measures of state quality, phase and amplitude damping
channels are the least destructive, while the symmetric
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FIG. 2: Energy, fidelity and concurrence as function of the noise parameter γ for the all energy minima found for the
2-qubit circuits with 3 and 4 gates (Fig. 1), obtained applying the three different indicated noise types. We plot all the
obtained local minima in the energy landscape, so that at a given value of γ there can be multiple points for the same
circuit. For symmetric depolarising noise there is no circuit-dependent difference, and hence only one curve is visible as
all curves overlap.

depolarising channel has a much more dramatic effect.

We perform a comprehensive search of the parameter
space, allowing us to identify all the local minima in the
energy landscape, which we represent by plotting multi-
ple points for the same value of γ. The number of local
minima shows a clear dependency on the noise type. Am-
plitude damping noise reveals local minima that branch
out at low noise levels, resulting in multiple points for
the same noise value. The number of minima depends on
the circuit: although difficult to deduce from the figure,
by numerically analyzing the results we find two solu-
tions for circuits (a) and (b), and three solutions for the
4-parameter circuit. Symmetric depolarising and phase
damping noise instead present a single global energy min-
imum.

Importantly, the extent to which different solutions are
affected by noise depends strongly on the used circuit.
While for symmetric depolarising noise there is no depen-
dence on the circuit, for phase and amplitude damping
noise the quality of the prepared state depends strongly
on the used circuits. The fact that circuits (a) and (b)
give different results shows that in presence of noise shift-
ing a rotation gate from one qubit to another can improve

the quality. Furthermore, we consistently see that one of
the solutions of the 4-parameter circuit is significantly
better than any solution in the 3-parameter circuits, in
all measures of state quality. This indicates that for this
system the over-parameterised circuit with one redun-
dant angle of rotation exhibits improved capabilities of
noise mitigation, or equivalently a higher noise resilience.

B. Four qubit system

To determine how these findings generalize to higher
qubit counts we perform the analogous analysis on a four-
qubit system. We use the 2-local Hamiltonian

Ĥ = σ̂1
z σ̂

3
z +

1

2
(σ̂1
xσ̂

2
x + σ̂1

yσ̂
2
y + σ̂3

xσ̂
4
x + σ̂3

yσ̂
4
y). (14)

This Hamiltonian describes the same physical system as
the one used for the previous section, but is valid for any
number of electrons in the system [48]. For its ground
state this Hamiltonian can be projected to the 2-qubit
one discussed above, and it follows that the two Hamil-
tonians have the same ground state energy. As explained
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FIG. 3: Circuit used for the 4-qubit Hamiltonian VQE
simulations. We apply a noise channel on all qubits after
each CNOT gate.

in Section II C, since we are dealing with a system larger
than 2 qubits we employ the maximum pairwise concur-
rence as a measure of entanglement. We find that the
maximum pairwise concurrence of the new ground state
is Qgs = 2√

5
≈ 0.894. The chosen state preparation

ansatz circuit is shown in Fig. 3, and gives the exact
energy in the noiseless case [48].

The results for maximum concurrence are shown along-
side the results for energy and fidelity in Fig. 4. We see
that the effect of the three types of noise channels on the
state optimisation is very similar to the 2-qubit case. In
particular, amplitude and phase damping have a less de-
structive impact than symmetric depolarising. Further-
more, the 4-qubit system exhibits multiple local minima
at low noise for amplitude damping that are absent for
phase and symmetric depolarising noise. However, com-
pared to the 2-qubit system, the number of local minima
is now larger and their appearance and disappearance
more irregular.

C. Discussion

Overall, the 2-qubit system and the 4-qubit system
show a similar behavior with respect to the effect of the
three types of noise channels, in all the measures of state
quality. Consistently, the most destructive noise channel
is the symmetric depolarising channel, where energy, fi-
delity and concurrence rapidly move away from the exact
values. In both simulations the concurrence falls to zero
at γ ≈ 0.2− 0.3.

In contrast, the other two noise channels concede a
degree of robustness, yielding better performance even at
high noise. Nevertheless, as noise rises towards γ = 1 all
circuits eventually tend towards unentangled states. We
note that for this system the concurrence is a much more
stringent quality criterion than the energy and fidelity,
since it inevitably goes towards zero for all circuits at γ =
1, while in some cases energy and fidelity only deviate
by 10-20% from the exact value at maximum noise. For
example, for 2-qubits and complete dephasing, the energy
is only about 10% higher than the noiseless value. This
shows that the energy alone can be a deceptively poor
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FIG. 4: Energy, fidelity and concurrence as function of the
noise level γ for all the energy minima found for the 4-qubit
VQE simulations with the circuit shown in Fig. 3, obtained
applying the three different indicated noise types. We plot
all the obtained local minima in the energy landscape, so
that at a given value of γ there can be multiple points for
the same circuit. Some points are missing due to imperfect
optimisation, and due to the fact that local minima can
appear and disappear for increasing noise levels.

quality measure for quantum algorithms.

Another common feature of the VQE experiments is
the presence of multiple local minima when amplitude
damping noise is present in the circuit, which are visual-
ized as multiple lines branching off from the same point
at zero noise as the noise parameter is increased. For
some of these solutions the measures of quality decrease
less with noise, and hence appear to be more resilient
than others.
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The damping noise models bring to light differences
between otherwise equivalent circuits at zero noise. All
circuits considered for the 2-qubit case (1) perform in-
distinguishably with respect to symmetric depolarising
noise. Under the two damping noise channels, however,
the three circuits are affected differently, with circuit (c)
appearing to perform considerably better than circuits
(a) and (b). Importantly, the different resilience to noise
found for circuits (a) and (b) for the 2-qubit case shows
that the circuit configuration needs to be optimised for
maximisation of noise resilience. We expect that this
optimization of gate placement is even more important
when the noise level varies across qubits. Our results also
show that the inclusion of redundant parameters can fur-
ther improve the quality of the final state. The origin of
this improvement is discussed in the next subsection.

D. Parameter degeneracies

In this section we show that the noise-induced phenom-
ena discussed above, namely the presence of multiple lo-
cal minima for amplitude damping and the differing per-
formance of the three circuits with amplitude and phase
damping, arise due to general features of parameterised
quantum circuits. Let us consider those circuits for which
there is a (non-identity) vector map f in parameter space
such that:

U(θ) |0〉 = eiφ U(f(θ)) |0〉 , (15)

indicating equality up to an arbitrary global real phase
φ. If such a map exists, we say that there is a param-
eter degeneracy, since two different sets of parameters
result in the same identical state and hence energy (or
more generally cost function). For a given circuit we can
have a set of maps of similar form. In case the set is
countable, we say that the circuit has discrete parame-
ter degeneracies. Conversely, if the members of the set
vary continuously across all the set, then the circuit has
continuous parameter degeneracies.

A circuit with parameter degeneracies will feature sym-
metries of the cost function in the parameter space, since
degenerate sets of parameters must yield the same value
of the cost function. Therefore, the presence of param-
eter degeneracies implies the existence of multiple iden-
tical minima in the noiseless cost function. In the case
of discrete degeneracies the minima are distinct and sep-
arated in the cost function landscape, while for a con-
tinuous degeneracy the minima are connected and may
be visualized as a valley in the landscape. If one intro-
duces a small state-dependent disturbance in the circuit,
which breaks the symmetry between parameter degener-
ate states, such as for specific noise channels, this leads
to different states being produced by the circuit. The de-
generate global energy minima for the noiseless case then
splits in local minima with different energies.

By analysing the parameters for the equivalent minima
for the noiseless case in our 2- and 4-qubit VQE simu-

FIG. 5: Illustrative example for a continuous parameter
degeneracy for an overparametrised circuit, where the second
rotation by θ2 is redundant in the absence of noise; the plots in
(a) and (b) show the parameter space landscape of the cost
function C(θ1, θ2) = Tr[ρ(θ1, θ2) |0〉〈0|]. In (a) the noiseless
results are shown, and in (b) a phase damping channel is
added between the Ry gates, with γ = 0.4. When noise is
added, the continuous parameter degeneracy is broken, so that
the valley in (a) is replaced by a set of minima in (b).

lations, we find that they obey fixed relations consisting
of shifts of the angles by π and inversions. We verify
that these relations are discrete parameter degeneracies
by analytically showing that they preserve the state gen-
erated by the circuit. Furthermore, we find numerically
that phase damping and symmetric depolarising chan-
nels preserve these degeneracies, while amplitude damp-
ing channels can break them. This is thus consistent with
the multiple noise induced minima appearing for ampli-
tude damping noise. In Ref. [53] an algorithm for the
systematic construction of a particular set of discretely
degenerate parameters is presented.

Continuous parameter degeneracies provide a useful
framework for explaining the observed improved re-
silience to noise when including redundant rotation gates.
Over-parameterised quantum circuits automatically have
continuous parameter degeneracies, since any variation in
the redundant parameter can be compensated by modi-
fying the remaining parameters accordingly in order not
to change the final state. As illustrative example circuit
we consider the placement of two identical single-qubit
rotation gates next to each other, shown in Fig. 5. As
cost function we consider the overlap with the |0〉 state:
C(θ1, θ2) = Tr[ρ(θ1, θ2) |0〉〈0|]. The computed cost func-
tion exhibits continuous parameter degeneracies in the
noiseless case (Fig. 5(a)). When a phase damping noise
channel is added between the two rotations, the contin-
uous parameter degeneracies are broken, and there now
exists a discrete set of minima (Fig. 5(b)). For such cases
re-optimization of the parameters obtained for γ = 0 for
the noisy case will generally lead to improved energies.
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FIG. 6: Circuit block used for the random target state
fidelity maximisation algorithm; shown is one layer of the
ansatz, which is repeated a number L times in the full
ansatz. Noise channels are added after CNOT gates.

Since at zero noise the minima exist as a continuous val-
ley, the addition of noise introduces a gradient in this
valley, which the optimizer can exploit to arrive to a bet-
ter solution. The improved noise resilience for phase and
amplitude damping noise due to a redundant parameter
can therefore be explained as resulting from the ability
of the circuit to explore more state preparation paths in
parameter space when compared to a circuit with fewer
parameters. It can therefore reach additional paths that
are potentially less affected by the noise. For symmetric
depolarising noise the relevant parameter degeneracies
are not broken upon the addition of noise, and hence the
addition of a redundant parameter does not improve the
results.

IV. RANDOM TARGET STATES

To generalise the findings obtained for specific Hamil-
tonians, here we investigate the ability of a quantum cir-
cuit to represent an ensemble of random target states on
4 qubits. This approach allows to estimate how closely
ground state wavefunctions of arbitrary Hamiltonians
can be reproduced with a given circuit ansatz in presence
of noise. For each target state we optimise the circuit to
maximise the output state fidelity. We then average the
maximum fidelity over the set of random states to obtain
the average optimal infidelity (Eq. (11)). We consider
again phase damping, amplitude damping and symmetric
depolarising noise, and use the same density matrix simu-
lator and local gradient-based minimiser (BFGS method)
that we employed in the VQE simulations. The ensem-
ble considered consists of 1000 real states generated by
sampling a random orthogonal matrix from the circular
real matrix distribution, the Haar distribution over real

orthogonal matrices [54], and picking its first column.

We choose a hardware-efficient ansatz [25] consisting
of an identical layer of 4 rotation gates and 3 CX gates,
repeated L times, as illustrated in Fig. 6. The choice of
this specific structure is motivated by its high expressibil-
ity as demonstrated in Ref. [55], and by its compactness,
which reduces the number of noise channels per layer.
Indeed, the first two CX gates can be executed in par-
allel, and hence according to our noise model we insert
only two noise channels per layer. Hardware-efficient cir-
cuits dense in parameterised operations are well-suited
for preparing general quantum states [12, 19, 56].

Initially we consider the noise levels γ ∈
{0.1%, 1%, 5%, 10%}, which span the range of noise
found in current devices [35]. The results are shown in
Fig. 7. In the figure we present the average optimal
fidelity for each γ for the three types of noise channels,
where the vertical bars indicate the standard deviation
over the ensemble. For comparison, we also plot the
result for the noiseless case (γ = 0). We consider
the two separate cases of noiseless training with noisy
evaluation (non-reoptimised), and noisy training with
noisy evaluation (reoptimised). By construction the
reoptimised results are always better or equal to the non-
reoptimised ones, as the former will take into account
any noise-induced change in the cost function landscape.
Comparing both results thus gives an insight on the
degree to which noise affects the landscape, and on to
what extent a variational algorithm can compensate for
it. From Fig. 7 we can see that the reoptimised results
in general improve significantly on the non-reoptimised
ones.

We can observe that for L ≥ 4 the noiseless fidelity
is maximised for all the target states and equal to one,
with zero standard deviation, showing that for such over-
parametrised circuits any target state can be essentially
exactly prepared. For L < 4 on the other hand the cir-
cuit does not reach all target states even without noise,
and the standard deviation increases as L decreases. As
expected, the addition of noise further reduces the aver-
age fidelity in all plots, with a larger noise level resulting
in bigger deviation from the noiseless fidelity. For the
non-reoptimised case, with all types of noise the fidelity
reaches a peak in L, corresponding to the optimal cir-
cuit depth in presence of noise. Interestingly, in the case
of phase and amplitude damping noise with reoptimisa-
tion, the fidelity continues to increase with the number
of layers, even for high noise levels.

We also explore noise down to γ = 10−4, which is rep-
resentative of the higher quality end of current quantum
devices [35]. Here we directly compare the relative in-
fidelity as a measure of the effects of noise only, as a
function of layers. The results are shown in Fig. 8 for
phase damping noise (the results for other types of noise
are shown in Appendix C). The relative infidelity reaches
a peak at L = 4 for the reoptimised case, while for the
non-reoptimised case it increases monotonically.

For larger values of L we have an overparametrised
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FIG. 7: Fidelity vs number of layers, L, at realistic noise levels, for the circuit ansätze illustrated in Fig. 6
(γ = 0% (blue), 0.1% (orange), 1% (green), 5% (red), 10% (purple)). The plots in the first column are for phase damping noise,
the second column plots are for amplitude damping noise, and the third column plots are for symmetric depolarising noise.
The top row of plots are for non-reoptimised parameters, in the second row of plots the rotation parameters are reoptimised
at each noise level, and the in the third row of plots the linear noise model results are presented. Each point shows the
average over 1000 target states, and the vertical bars at each point indicate the standard deviation.
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FIG. 8: Relative infidelity as function of number of
layers, L, for different levels γ of phase damping noise.
The solid curves are for noise-aware reoptimised
parameters, the dash-dotted curves are for parameters
fixed at their values optimized in absence of noise
(non-reoptimised), and the dashed curves indicate the
results of the linear noise model. Each point shows the
average over 1000 target states, and the vertical bars at
each point indicate the standard deviation.

ciruit, and we therefore expect the presence of a corre-
spondingly large number of parameter degeneracies. For
the 4-qubit VQE system and amplitude damping noise
we found a large number of local minima due to discrete
parameter degeneracies (Fig. 4). To show this is also the
case for general target states we construct a set of de-
generate states using the algorithm outlined in Ref. [53],
and evaluate the fidelity for each of these sets of param-
eters. In Fig. 9 we show the resulting distribution of
fidelities for L = 4 as example. While at zero noise they
all give the same fidelity, with amplitude damping noise
a rather large spread of the fidelities is found. For phase
damping and symmetric depolarising noise on the other
hand the degeneracies are preserved, and a single sharp
peak is found in the histogram.

In the VQE optimisation (Section III) we observed
that under symmetric depolarising and amplitude damp-
ing noise, there exists a threshold γ < 1, past which
the algorithm converges to a non-entangled state, corre-
sponding to an undesired noise-induced transition. It is
important to verify whether a similar phenomenon ap-
pears for the fidelity maximisation with general target
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FIG. 9: Distribution of fidelity maxima originating from
broken parameter degeneracies due to phase damping (blue),
amplitude damping (orange), and symmetric depolarising
(green) noise. The horizontal axis shows the fidelity, and the
vertical axis the number of occurrences in a range of 0.002
around a given fidelity value. The total number of considered
discrete parameter degenerate states is 4096, and is
constructed using the algorithm described in Ref. [53]. The
vertical axis has been cropped for phase damping and
symmetric depolarising noise, where all states are within one
bin. We choose a random real target state at L = 4 and
γ = 0.01.

states. We therefore choose a target state at random
from the distribution, and plot the fidelity of the out-
put state after optimization as a function of noise. The
results are shown in Fig. 10 for phase damping noise,
γ ∈ [0, 0.1] and L = 3. In Fig. 10a we show fidelity and
concurrence, and in Fig. 10c we show a representative
subset of the parameters optimized at each γ. In Fig.
10b we show fidelity and concurrence evaluated without
noise, but with the circuit rotation parameters optimized
with noise (Fig. 10c). We indeed observe a noise-induced
transition in the example considered, which appears at a
much lower noise level threshold (γ ≈ 0.04) than in the
VQE simulations. This transition is also visible in the
converged parameter values (Fig. 10c) and the resulting
quality measures evaluated for those parameters without
noise (Fig. 10c). However, the state after the transition
is still entangled, and indeed the concurrence behaves in
a nontrivial way, highlighting that the transition is more
complex in the general case. We note that the detailed
behavior depends on the specific target state, and other
examples of such transitions display different behaviours,
ranging from sharp thresholds to smoother transitions
(see Appendix C). There are also target states for which
no well-defined transition can be observed.

A. Discussion

For the non-reoptimised case, the fidelity reaches a
peak in L, which depends on the noise level, signaling
the point where the noise from the increased number of
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FIG. 10: Evolution of fidelity and concurrence at convergence
for fidelity optimization at different strengths γ of phase
damping noise, for a single random target state at L = 3. Four
indicative optimised rotation angles are shown in the bottom
panel to illustrate the evolution of the optimal parameters
with increasing noise. The resulting fidelity and maximum
pairwise concurrence are shown in the top panel. The central
panel shows the measures evaluated without noise for the
angles optimised at each γ value. A discontinuity in the slope
of both state quality measures and converged angles is found
at γ ≈ 0.04, which therefore corresponds to the threshold γ
value for this state and circuit, above which linear
extrapolation of the properties to zero noise is not possible.

noise channels overcomes the improvement in the accu-
racy of the circuit with the additional parameters. In-
terestingly, in the case of phase and amplitude damp-
ing noise with reoptimisation the fidelity continues to
increase with the number of layers even for high noise
levels. The standard deviation of the results shows that
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the most variability in the state quality is present for
shallower circuits, and generally decreases with a larger
number of layers. This suggests that, while the accu-
racy of shallow circuits depends heavily the target state,
overparametrised circuits with more layers become in-
creasingly consistent at approximating a general state.
Interestingly, the pattern still holds in the presence of
noise, however there is additional variance, showing the
state-dependence of the noise effects. Past L = 4 the
reoptimised simulations show a noticeable improvement
in noisy fidelity compared to the non-reoptimised simula-
tions. This depth threshold is significant, as it marks the
point past which the circuit can perfectly reproduce all
target states at zero noise. Any additional layer beyond
L = 4 therefore does not contribute to the noiseless fi-
delity and only introduces redundancy. In the noisy case
this overparametrisation leads to improved resilience for
amplitude and phase damping noise, while for symmetric
depolarising noise no improvement is found. This is anal-
ogous to what found for the VQE simulations in Sec. III.
The specificity to amplitude and phase damping noise is
due to the fact that these break the continuous degenera-
cies resulting from an over-parameterisation of the quan-
tum circuit, while symmetric depolarising noise does not.
Note that we do not expect the improvement to continue
to arbitrarily large number of layers, as presumably the
capability of over-parametrisation to minimise noise is
bounded. More research on real hardware is needed to
understand the practical limits.

Improved state quality upon parameter reoptimisation
in quantum algorithms has previously been reported in
Refs. [32] and [15], where the authors find that phase and
amplitude damping noise generally impact state prepara-
tion in VQE less than symmetric depolarising noise, with
phase damping noise being the least impactful. In par-
ticular, Ref. [15] studies how reoptimisation under noise
significantly improves the results of a VQE for a chem-
ical problem. However, their model applies noise after
the state has been prepared, as opposed to the inter-
leaved noise model proposed here. Hence, the breaking
of parameter degeneracies could not be observed in that
context.

1. Stochastic model

To provide further insight in our numerical results,
here we present a model for the infidelity at small γ.
In Appendix B we formulate a model that approximates
noise propagation as linear, in the sense that each noise
channel contributes an additive factor to the final relative
infidelity. The model gives an estimate for the average
relative infidelity and its variance as

R̄rel ≈ αγ d, (16)

∆2
rel ≈ β γ2d2, (17)

where α and β are constants obtained from the target
state distribution and the noise channel, and d is the

number of noise channels, which for our ansatz if d = 2L.
In Appendix B we provide a detailed description includ-
ing the procedure for the calculation of α and β, together
with their numerical values obtained for our systems.

We plot the expectations of the model for the fidelity
in Fig. 7 (bottom row of panels), and for the relative
infidelity in Fig. 8. Overall the model captures the nu-
merical trends rather well. As expected from the model
being a linear approximation, it describes better the be-
havior of the fidelity at low noise levels, while for higher
noise levels the deviations compared to the numerical re-
sults become larger. Since the model is formulated un-
der the assumption of no noisy optimisation, it matches
the non-reoptimised results much better than the reop-
timised ones. In the latter case, the agreement is never-
theless reasonable until L < 4, however it diverges sig-
nificantly for larger L, since the model does not include
the improvement of fidelity due to parameter reoptimisa-
tion with the number of layers for phase and amplitude
damping noise.

A further effect of the noisy optimisation that the
linear model cannot capture is the sudden transition
to more noise-resilient set of parameters above a noise
threshold, as observed in Fig. 10. Clearly, this poses
an upper bound to the noise level that such simplified
models can adequately describe, as there exists a
threshold noise level past which the new state cannot
be extrapolated back to the noiseless state. For noise
mitigation techniques that extrapolate finite noise data
down to the zero noise level[20, 22], this implies that
noise data needs to be collected below this critical
threshold to avoid extrapolating to potentially undesired
zero noise states.

V. CONCLUSIONS

We study the effects of different types and levels of
noise on the quality of the results of VQAs. We find
symmetric depolarising noise to be the most detrimental,
while for amplitude and phase damping noise it is pos-
sible to mitigate the effects of noise by optimized gate
placement, overparametrisation and noise-aware reopti-
mization. We obtain these results consistently across our
considered systems, a 2- and 4-qubit simulation for a
specific Hamiltonian, and 4-qubit simulations for general
target states. We introduce the concept of parameter
degeneracies, which are sets of parameters in the quan-
tum circuit ansatz that give the same identical output
state in the noiseless case. When noise is added, these
degeneracies can be broken, leading to some of the origi-
nally degenerate parameter states to be more resilient to
noise than others. For the VQE simulations we use three
measures of state quality, namely energy, fidelity and en-
tanglement, and show that the energy alone can be a de-
ceptively poor quality measure for quantum algorithms.
When maximising the fidelity of the state produced with
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a given ansatz with a target state, we find that in pres-
ence of symmetric depolarising noise there is a circuit
depth, where the fidelity is maximised. For amplitude
and phase damping noise, and for the considered circuit
depths, noise-aware parameter reoptimisation allows to
progressively improve the fidelity as the circuit depth is
increased. The results without noise-aware optimization
compare well with a linearised noise model. We show
that the average deviation from the target state is linear
for low enough noise levels. For a number of target states
and circuits there is a noise threshold, above which the
states produced by the circuit can have largely different
physical properties from the true target state. For prac-
tical applications it is critical to ensure that noise levels
are below this threshold in order to preclude convergence
to unphysical solutions.
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APPENDIX

APPENDIX A: Kraus operators for simulations of
noise

In the Kraus operator formalism, each noise channel is
assigned a set of operators {Ei}, which are applied to a
quantum state by conjugation. The integer index i spans
across all considered operators for a given channel. For
a given input quantum state ρin the noisy output state
ρ = Λ(ρin) is obtained by

ρ = Λ(ρin) =
∑
k

EkρinE
†
k. (A1)

In order to preserve the trace of the quantum state, Kraus

operators need to obey the condition
∑
k E
†
kEk = 1.

The one-qubit phase damping channel is implemented
with the following Kraus operator matrices:

E
(1)
1 =

(
1 0
0
√

1− γ

)
, E

(1)
2 =

(
0 0
0
√
γ

)
. (A2)

This channel has the effect of suppressing the off-diagonal
components of the density matrix, while keeping the di-
agonal components unchanged. The one-qubit amplitude
damping channel is described by:

E
(1)
1 =

(
1 0
0
√

1− γ

)
, E

(1)
2 =

(
0
√
γ

0 0

)
. (A3)

Similarly to the phase channel, the off-diagonal compo-
nents are suppressed. At the same time, however, the
diagonal components are altered in favour of the |0〉
state, representing a relaxation of the system towards
the ground state.

Finally, the operators for a single-qubit symmetric de-
polarising channel are:

E
(1)
1 =

√
1− 3γ

4
12, E

(1)
2 =

√
γ

4
σx

E
(1)
3 =

√
γ

4
σy, E

(1)
4 =

√
γ

4
σz, (A4)

where σx/y/z are the Pauli matrices. Note that we
adopted a scaling of the parameter γ for symmetric depo-
larising noise, such that at γ = 1 the output state is the
completely mixed state 1

2 I2. In the Bloch sphere repre-
sentation of a one-qubit state, pure states are represented
as living on the surface of the sphere, while mixed states
live in the interior, with the completely mixed state at
the center. A symmetric depolarising channel can there-
fore be visualized as a uniform contraction of the Bloch
vectors towards the center.

For a product channel, the set of Kraus operators is
given by the tensor product of the set of single-qubit
Kraus operators:

{E(n)
i } = {E(1)

i }
⊗N . (A5)

For example, the Kraus operators for a local dephasing
channel on two qubits are:

E
(2)
1 = E

(1)
1 ⊗ E(1)

1 , E
(2)
2 = E

(1)
1 ⊗ E(1)

2 ,

E
(2)
3 = E

(1)
2 ⊗ E(1)

1 , E
(2)
4 = E

(1)
2 ⊗ E(1)

2 . (A6)

To apply a product channel using the formula in Eq.
(A1) would hence require the summation of exponen-
tially many terms in the number of qubits. In practice,
on the quantum simulator this is done by working in the
Pauli picture. [58] Specifically, we can represent a general
quantum state as a vector in the Pauli basis, and a gen-
eral quantum channel as a matrix, also known as Pauli
transfer matrix. Therefore, the application of a quantum
channel, including noise channels, is reduced to a matrix
multiplication between the corresponding Pauli transfer
matrix and the vectorised quantum state. [59]

APPENDIX B: Linear model of noise propagation

In the interleaved noise model introduced in Sec. II B
we consider a quantum circuit that we split in d layers.
In the absence of noise, the unitary operation applied by
the circuit can be written as:

U = UdUd−1 · · ·U2U1, (B1)

where Ui is the ith layer unitary operator. In the noisy
case we move to the density matrix picture for mixed
states, and use maps between density operators (or su-
peroperators) to represent operations on these mixed
states, which are defined by U(ρ) = UρU †. This rep-
resents a noiseless quantum channel. As outlined in the
main text, this corresponding noisy quantum channel is
given by

Ũ = ΛdUd...Λ1U1. (B2)

1. Example: global depolarising noise

We first consider the case where all the noise channels
are given by global symmetric depolarising noise on N
qubits, since in this case we can write down an exact
model for the noise propagation. The global symmetric
depolarising channel is defined as acting on any state ρin
as follows:

Λ (ρin) = (1− γ)ρin + 2−Nγ 1, (B3)

where 1 is the identity operator on N qubits (in matrix
form it is of dimension 2N × 2N ). The effect of the chan-
nel is therefore to replace any state with the completely
mixed state with probability γ.

If the circuit under consideration consists of d such
channels interleaved with unitary operations, the prob-
ability of the state not being affected by any channel is
(1 − γ)d. Any other outcome will lead to the final state
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being maximally mixed, as the maximally mixed state is
invariant under the action of any quantum channel. The
final state of the circuit can therefore be written as

ρ = (1− γ)dU (ρin) + 2−N (1− (1− γ)d) 1, (B4)

where U is the noiseless circuit unitary map.
We can quantify the difference between the state pro-

duced by the noisy circuit, ρ, and the state produced
without noise, ρid, using the infidelity, defined in Eq.
(9). From now on, the subscript id will universally refer
to a quantity evaluated on an ideal, noiseless circuit. For
the global symmetric depolarising noise operator in Eq.
(B4) we obtain

R(ρid, ρ)

= 1− Tr[ρid((1− γ)dρid + 2−N (1− (1− γ)d)1)]

= 1− (1− γ)dTr[ρ2id]− 2−N (1− (1− γ)d)Tr[ρid]

=
(

1− (1− γ)
d
) (

1− 2−N
)
, (B5)

where we use the fact that ρid is a pure state, and so
Tr[ρ2id] = 1. Expanding at first order in γ we get

R(ρid, ρ) = (1− 2−N ) d γ +O(γ2). (B6)

This means that, in the low noise regime, the infidelity
increases approximately linearly in both γ and the num-
ber of layers d, with a prefactor that is effectively 1 for
large systems (N →∞).

Note that a global symmetric depolarising channel
is not equivalent a product of single-qubit depolarising
channels, and therefore the relation derived in Eq. (B6)
does not apply for the product channel noise model that
we employ in this work. However, the simple result of
Eq. (B6) provides the motivation to seek an analogous
equation for more general noise models.

2. Infidelity propagation for general noise channels

We start by expanding the action of a general N -qubit
noise channel on a state ρ to first order as

Λ (ρ) = (1− γ)ρ+ γλ(ρ) +O(γ2). (B7)

Here λ is a map that represents the first-order action
of the channel, which for global symmetric depolarising
channels is simply λ(ρ) = 2−N1 ∀ρ. Note that the ma-
trix λ(ρ) is, in general, not a valid quantum state. We
term λ the linear action of the noise channel. In the ex-
pansion we take into account the fact that for a general
noise channel there could be higher order effects in the
local noise parameter γ. Since the gate noise level in cur-
rent quantum computers has γ � 1 [35], we expect the
linear action to always dominate, and hence that one can
neglect higher order terms.

We introduce the partially noisy circuit:

Ũ:i: := Ud · · · Ui+1λiUi · · · U1, (B8)

obtained by inserting a single noise channel in the noise-
less circuit and keeping only the terms at order γ. Ap-
plying the noisy circuit onto an initial state ρ0 and ex-
panding in O(γ), it reduces to:

ρ ≈ [(1− γd)U + γ
d∑
i=1

Ũ:i:] (ρ0)

= ρ− γ
d∑
i=1

(U − Ũ:i:) (ρ0). (B9)

The resulting difference to the noiseless result is an ad-
ditive contribution proportional to γ.

Now we combine the first-order expansion with the lay-
ered noise model, and apply it to the variational problem
of maximising the fidelity to a pure target state ρT. In
this case, the fidelity between the noisy state output by
the circuit after optimisation ρopt and the target state
simplifies to Tr(ρTρopt). In general, the circuit may not
reproduce the ideal target state ρT exactly. We therefore
have

F (ρT, ρopt) = Tr(ρTρopt)

≈ Tr[ρTρopt,id − ρTγ
d∑
i=1

(U − Ũ:i:)(ρ0)]

= F (ρT, ρopt,id)− γ
d∑
i=1

(F (ρT, ρopt,id)− F (ρT, Ũ:i:(ρ0))).

(B10)

We can now define the relative infidelity as

Rrel(ρT; ρopt,id, ρopt) := F (ρT, ρopt,id)− F (ρT, ρopt).
(B11)

We now define the state at the ith layer ρopt,i, as well as
the target state ”back-propagated” to ith layer as

ρT,i := U−1:i ρT, (B12)

where we use the fact that U:i is a unitary channel. With
this definition and the invariance of fidelity under unitary
transformations, we can write Eq. (B10) as:

Rrel(ρT; ρopt,id, ρopt) ≈ γ
d∑
i=1

Rrel(ρT,i; ρopt,i, λ(ρopt,i)).

(B13)

This result shows that the relative infidelity is approxi-
mately linear in the number of noise channels d and the
local noise parameter γ. Each noise channel contributes
a factor that depends on the target state ρT, the state
through the channel ρopt,i and its image under the lin-
ear action λ(ρopt,i). Note that this is consistent with
the result for the symmetric depolarising channel in the
previous section, by taking

Rrel(ρi; ρi, λ(ρi)) = R(ρi, λ(ρi)) = 1− 2−n ∀ρi. (B14)
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Importantly, our total infidelity is state dependent.
Hence, the path through the space of states that the cir-
cuit takes is very important for the noise resilience of
the algorithm. If two different paths lead to the same
state in the noiseless case, they may still have very dif-
ferent infidelities in the noisy case, as dictated by these
intermediate states.

To simplify the result and compare it to literature, one
can estimate the average infidelity of a noise channel over
all states, Ri, and with it obtain a very rough estimate
for the total infidelity. First let us assume that the circuit
can indeed reach the target state, such that we have

Rrel(ρ,i; ρi, λ(ρi)) = R(ρi, λ(ρi)) = 1− Tr[ρi λ(ρi)]
(B15)

and

Rrel(ρid; ρid, ρ) = R(ρid, ρ) = 1− Tr[ρid ρ]. (B16)

Now use the definition of the linear action in Eq. (B7)
to write, to first order in γ,

γRrel(ρi; ρi, λ(ρi)) ≈ γ − Tr[ρi Λ(ρi)] + (1− γ)Tr[ρ2i ]

= 1− Tr[ρi Λ(ρi)]. (B17)

In accordance with literature, we define the gate infidelity
as Ri = 1−Tr[ρi Λ(ρi)]. In this way with Eq. (B13) one
obtains for the total infidelity of the circuit

R ≈
d∑
i=1

Ri. (B18)

From this equation we obtain the total state-averaged
circuit fidelity as function of the averaged fidelities of
each noise channel, Fi = 1−Ri, as

F = 1−
d∑
i=1

Ri =
d∏
i=1

(1−Ri) +O
(
R2
i

)
. (B19)

Since the infidelities of a noise channels are small, we can
neglect higher order terms, and obtain

F ≈
d∏
i=1

Fi, (B20)

where we have used Fi = 1 − Ri. This last expression
is widely used in literature. For example, in Ref. [29]
the fidelity is assumed to behave in this way, and sub-
sequent experimental results are shown to be consistent
with this assumption. In Ref. [60] it is shown that the
approximation error of a matrix product state representa-
tion of a quantum circuit is approximately multiplicative
in the fidelity of a single layer. In Ref. [61], a similar
reasoning shows that this multiplicative decay of fidelity
applies for interleaved depolarising channels in QAOA
circuits. The decay of the cost function with the number
of noisy channel that follows from these equations was
rigorously proven in Ref. [24] for local symmetric depo-
larising channels. Ref. [62] shows that infidelity grows

at most quadratically with the number of layers of a cir-
cuit, and for decoherent channels it is expected to grow
linearly at first order, which is equivalent to what we have
shown here. However, the measure used there is the gate
infidelity over Haar-distributed states, which might not
reflect the outcome of specific experiments [63].

3. Expected fidelity over an ensemble

Up to now we considered the infidelity for one target
state. We extend this to the case where one is provided
with an ensemble of nT pure target states sampled from
a distribution. As figure of merit we use the average
optimal infidelity over the ensemble, which we defined in
Eq. (11) as

R̄ = 〈R(ρT, ρopt)〉T, (B21)

where ρopt is optimized with noise for each target state.
An R̄ of zero would imply that the quantum circuit can
represent any N -qubit state exactly. In practice R̄ is
usually larger than zero even in the noiseless case due the
inherent limitations of a given circuit, and the addition of
noise further increases R̄. We define the average optimal
relative infidelity as

R̄rel := R̄− R̄id = 〈Rrel(ρT; ρopt,id, ρopt)〉T, (B22)

where as before the subscript id indicates the infidelity
and density matrix evaluated without noise:

R̄id = 〈R(ρT, ρopt,id)〉T. (B23)

Next we derive an approximate relation for R̄rel allow-
ing us to qualitatively understand its behavior and relate
it to existing literature. Using Eq. (B13) and the fact
that in our noise model all the noise channels are identi-
cal, we obtain

R̄rel ≈ γ

〈
d∑
i=1

Rrel(ρT,i; ρopt,i, λ(ρopt,i))

〉
T

. (B24)

We now assume that at every level the noiseless ρT,i and
ρopt,i are distributed identically to the final states ρT and
ρopt. Thus we can write

R̄rel ≈ 〈Rrel(ρT; ρopt, λ(ρopt))〉T γ d
≈ αγ d, (B25)

where we defined the constant of proportionality

α := 〈Rrel (ρT; ρopt, λ(ρopt))〉T. (B26)

Note that since λ(ρopt) is generally not a valid quantum
state by itself, since usually Tr[λ(ρ)] 6= 1, α may also be
greater than 1.
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With the additional assumption about the distribu-
tions of the intermediate states, the variance of the rela-
tive infidelity can be estimated. Defining the variance of
the optimal relative infidelity over the target states:

∆2
rel := 〈R2

rel(ρT; ρopt,id, ρopt)〉T − R̄2
rel

= Var
T

(Rrel(ρT; ρopt,id, ρopt)) . (B27)

Using Eq. (B13) and a standard property of the variance,
within these approximations we obtain

∆2
rel ≈ Var

T

(
γ

d∑
i=1

Rrel(ρT,i; ρopt,i, λ(ρopt,i))

)

= γ2Var
T

(
d∑
i=1

Rrel(ρT,i; ρopt,i, λ(ρopt,i))

)
. (B28)

Now we must introduce some information about the cor-
relation between states at every noise channel. Since
states going through successive channels have a certain
degree of similarity, in the sense that they are related
by a short-depth sequence of unitaries, it should be ex-
pected that they retain a high level of correlation. There-
fore, we assume that the states at every noise channel
{ρopt,1, ρopt,2, · · · , ρopt,d} are perfectly correlated. It fol-
lows that:

∆2
rel ≈ β γ2d2, (B29)

with

β := Var
T

(Rrel(ρT; ρopt, λ(ρopt))). (B30)

Note that, if instead we assumed that the states are un-
correlated with each other, we would get ∆2

rel ≈ β γ2d.
Eqs. (B25) and (B29) define the stochastic model for

noise propagation.

4. Estimation of α and β

In this section we show that α and β can be estimated
with knowledge of only the distribution of target states
and the noise channel properties. First of all, we note
that both constants depend on the output state ρopt,
which depends on the capability of the circuit to ap-
proximate the target state. Since we wish to remove the
dependence on the circuit entirely, we use as an approx-
imation λ(ρopt) ≈ λ(ρT). This is justified by the fact
that, given a sufficiently expressive circuit, ρopt will not
be much different from ρT. Therefore, using the defini-
tions in Eqs. (B26) and (B30) the parameters can be
estimated from the target states as

α ≈ 〈Rrel (ρT; ρT, λ(ρT))〉T = 〈R (ρT, λ(ρT))〉T, (B31)

β ≈ Var
T

(R(ρT, λ(ρT))), (B32)

where we can switch the relative infidelity for regular in-
fidelity as we have removed all dependence on the circuit.

Using Eq. (B7) and taking the derivative of Λ(ρ) about
γ = 0 we obtain

dΛ(ρ)

dγ

∣∣∣
γ=0

= λ(ρ)− ρ → λ(ρ) =
dΛ(ρ)

dγ

∣∣∣
γ=0

+ ρ.

(B33)
Therefore we can write

R(ρT, λ(ρT)) = 1− Tr (ρTλ(ρT))

= 1− Tr

(
ρT

(
dΛ(ρT)

dγ

∣∣∣
γ=0

+ ρT)

))
= 1− Tr

(
ρT
dΛ(ρT)

dγ

∣∣∣
γ=0

)
− Tr

(
ρ2T
)

= −Tr

(
ρT
dΛ(ρT)

dγ

∣∣∣
γ=0

)
. (B34)

Substituting back into Eqs. (B31) and (B32) we obtain

α ≈ −
〈
d

dγ
Tr(ρTΛ(ρT))

∣∣∣
γ=0

〉
T

, (B35)

β ≈ Var
T

(
d

dγ
Tr(ρTΛ(ρT))

∣∣∣
γ=0

)
. (B36)

If states can be efficiently sampled from the distribu-
tion, the constants α and β can be estimated given an
exact density matrix simulator. Given a sampled target
state, the derivative can be evaluated in practice using
finite differences as

d

dγ
Tr(ρTΛ(ρT))

∣∣∣
γ=0

= lim
ε→0

Tr(ρTΛ(ρT))|γ=ε − 1

ε
.

(B37)
The results obtained with Eqs. (B35-B37) for the distri-
bution of 4-qubits real states used in our simulations are
shown in Table I.

Noise channel α β

Phase 0.888 0.00585

Amplitude 1.88 0.119

depolarising 2.78 0.0132

TABLE I: Estimated α and β for local noise channels
on four qubits, averaged over the real Haar distribution
states. 10000 randomly chosen states were used for the

numerical estimation.

5. Scaling of α with the number of qubits

For an approximate scaling estimate of α with the
number of qubits N , we consider simplified case of a
target state being a tensor product of N independent
identically distributed single-qubit states. With this as-
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sumption we can write

α ≈ − d

dγ

∣∣∣
γ=0

Tr[ρTΛ(ρT)]

= − d

dγ

∣∣∣
γ=0

Tr

[⊗
i

ρ
(i)
T Λ(i)(ρ

(i)
T )

]

= − d

dγ

∣∣∣
γ=0

∏
i

Tr[ρ
(i)
T Λ(i)(ρ

(i)
T )]

= −
∑
i

d

dγ

∣∣∣
γ=0

(
Tr[ρ

(i)
T Λ(i)(ρ

(i)
T )]

)∏
j 6=i

Tr[ρ
(j)
T Λ(j)|γ=0(ρ

(j)
T )]

= −
∑
i

d

dγ

∣∣∣
γ=0

Tr[ρ
(i)
T Λ(i)(ρ

(i)
T )]

=
N∑
i=1

α(i), (B38)

where we defined the single-qubit quantity:

α(i) := − d

dγ

∣∣∣
γ=0

Tr[ρ
(i)
T Λ(i)(ρ

(i)
T )]. (B39)

Since we assumed that the single-qubit product states
are identically distributed, these terms are equal for all i
and we obtain a scaling of α ∼ O(N). Thus, we expect
the effect of noise to grow linearly with the number of
qubits.



18

APPENDIX C: Additional results

1. VQE for noise levels varying across qubits

In this subsection we show results for 2-qubit VQE
simulations as done in Sec. III A, but for the case where
the two qubits suffer from very unequal noise levels. We
consider the case of one qubit having 10 times the noise of
the other one. Analogously to the equal noise results in
Fig. 2, we plot the converged energy, fidelity and concur-
rence with respect to the noise parameter γ, which here
refers to the most noisy qubit. We do this for the three
noise channels (phase, amplitude, depolarising), and fo-
cus only on the 4-parameter circuit (Fig. 1(c)). There

are two possible configurations: the first is where the
most noisy qubit is the top qubit in Fig. 1(c), which we
denote as circuit 0; the second is where the bottom qubit
is more noisy, which we denote as circuit 1.

The results are presented in Fig. 11, and show that
for phase and symmetric depolarising noise there is no
difference between the two circuits, while for amplitude
damping the difference is substantial. In particular, the
local minima branch in very distinct directions in the two
circuits. This indicates that the degree to which ampli-
tude damping noise breaks the parameter degeneracies,
leading to different local minima with increasing γ, is sen-
sitive to the relative strength of the noise on the different
qubits.
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FIG. 11: Energy, fidelity and concurrence for the optimal energy minima found for the 2-qubit 4-parameter circuit in Fig. 1c,
and for three different types of noise. In these simulations one qubit has a noise level 10 times less than the other: in circuit 0
the first qubit is more noisy, in circuit 1 the second qubit. The columns represent different types of noise channels, the rows
the different measures of states quality.
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2. Relative infidelity for different noise channels

We show the results for relative infidelity for amplitude
damping and symmetric depolarising noise, for the target
state optimization experiments. The results are similar
to those for phase damping noise, presented in the main
text (Fig. 10). There is a good agreement between the

stochastic model and the numerical results for low noise
parameter values. The model follows more closely the
non-reoptimised results, which in the symmetric depolar-
ising case match almost exactly the reoptimised results.
Furthermore, the agreement improves with the number of
layers, indicating that the assumptions of random inter-
mediate states are more appropriate for deeper circuits.
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FIG. 12: Relative infidelity vs layers, for a) amplitude damping noise and b) symmetric depolarising noise, for different values
of the noise level γ. The solid curves are for noise-aware reoptimised parameters, the dash-dotted curves are for parameters
optimised in the absence of noise (non-reoptimised), and the dashed curves indicate the results for the linear noise model.
Each point shows the average over 1000 target states, and the verical bars at each point indicate the standard deviation.
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3. Noise-induced state transitions for further
random states

In Fig. 10 we show how fidelity and concurrence as
function of γ abruptly change slope at at threshold γ
value for one randomly chosen target state. To show that
this behavior is general, in Fig. 13 we present analogous
results for four more randomly chosen target states. We
also consider different circuit depths. The transitions are
overall very different to one another, at times discontinu-
ous in their fidelity and at other times smooth and barely

detectable. In these latter cases, the concurrence acts as
a clearer indicator for such transitions. The varied phe-
notype of transitions suggests that the phenomenon is
complex and depends heavily on the circuit and the cho-
sen target state. Indeed, in some situations (see the last
row of Fig. 13) no sharp transitions are observed, and
both measures of state quality vary smoothly. The results
illustrate that generally one always observes critical noise
level thresholds, and that these can be either abrupt and
discontinuous or else smoothed out in a continuous way.
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FIG. 13: Evidence of noise-induced state transitions for different random states. Various measures are plotted at convergence
for a range of values of the phase noise parameter γ. The plotted data are described in more detail in fig. 10. Left panels:
fidelity and concurrence at convergence, evaluated with noise; centre panels: fidelity and concurrence evaluated without noise,
but for the converged optimized angles at every noise level; right panels: value of four of the circuit rotation parameters at
convergence. The first two rows have a circuit of depth L = 3, the last two have L = 4.
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