1,742 research outputs found

    Double coherence resonance in neuron models driven by discrete correlated noise

    Full text link
    We study the influence of correlations among discrete stochastic excitatory or inhibitory inputs on the response of the FitzHugh-Nagumo neuron model. For any level of correlation the emitted signal exhibits at some finite noise intensity a maximal degree of regularity, i.e., a coherence resonance. Furthermore, for either inhibitory or excitatory correlated stimuli a {\it Double Coherence Resonance} (DCR) is observable. DCR refers to a (absolute) maximum coherence in the output occurring for an optimal combination of noise variance and correlation. All these effects can be explained by taking advantage of the discrete nature of the correlated inputs.Comment: 4 pages, 3 figures in eps, to appear in Physical Review Letter

    Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Get PDF
    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming

    Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy

    Get PDF
    Northern Hemisphere sea ice has been declining sharply over the past decades and 2012 exhibited the lowest Arctic summer sea-ice cover in historic times. Whereas ongoing changes are closely monitored through satellite observations, we have only limited data of past Arctic sea-ice cover derived from short historical records, indirect terrestrial proxies, and low-resolution marine sediment cores. A multicentury time series from extremely long-lived annual increment-forming crustose coralline algal buildups now provides the first high-resolution in situ marine proxy for sea-ice cover. Growth and Mg/Ca ratios of these Arctic-wide occurring calcified algae are sensitive to changes in both temperature and solar radiation. Growth sharply declines with increasing sea-ice blockage of light from the benthic algal habitat. The 646-y multisite record from the Canadian Arctic indicates that during the Little Ice Age, sea ice was extensive but highly variable on subdecadal time scales and coincided with an expansion of ice-dependent Thule/Labrador Inuit sea mammal hunters in the region. The past 150 y instead have been characterized by sea ice exhibiting multidecadal variability with a long-term decline distinctly steeper than at any time since the 14th century

    Triggering synchronized oscillations through arbitrarily weak diversity in close-to-threshold excitable media

    Full text link
    It is shown that arbitrarily weak (frozen) heterogeneity can induce global synchronized oscillations in excitable media close to threshold. The work is carried out on networks of coupled van der Pol-FitzHugh-Nagumo oscillators. The result is shown to be robust against the presence of internal dynamical noise.Comment: 4 pages (RevTeX 3 style), 5 EPS figures, submitted to Phys. Rev. E (16 aug 2001

    A propensity criterion for networking in an array of coupled chaotic systems

    Full text link
    We examine the mutual synchronization of a one dimensional chain of chaotic identical objects in the presence of a stimulus applied to the first site. We first describe the characteristics of the local elements, and then the process whereby a global nontrivial behaviour emerges. A propensity criterion for networking is introduced, consisting in the coexistence within the attractor of a localized chaotic region, which displays high sensitivity to external stimuli,and an island of stability, which provides a reliable coupling signal to the neighbors in the chain. Based on this criterion we compare homoclinic chaos, recently explored in lasers and conjectured to be typical of a single neuron, with Lorenz chaos.Comment: 4 pages, 3 figure

    Magnetic Field-Induced Condensation of Triplons in Han Purple Pigment BaCuSi2_2O6_6

    Full text link
    Besides being an ancient pigment, BaCuSi2_2O6_6 is a quasi-2D magnetic insulator with a gapped spin dimer ground state. The application of strong magnetic fields closes this gap creating a gas of bosonic spin triplet excitations called triplons. The topology of the spin lattice makes BaCuSi2_2O6_6 an ideal candidate for studying the Bose-Einstein condensation of triplons as a function of the external magnetic field, which acts as a chemical potential. In agreement with quantum Monte Carlo numerical simulations, we observe a distinct lambda-anomaly in the specific heat together with a maximum in the magnetic susceptibility upon cooling down to liquid Helium temperatures.Comment: published on August 20, 200

    Excitability in autonomous Boolean networks

    Full text link
    We demonstrate theoretically and experimentally that excitable systems can be built with autonomous Boolean networks. Their experimental implementation is realized with asynchronous logic gates on a reconfigurabe chip. When these excitable systems are assembled into time-delay networks, their dynamics display nanosecond time-scale spike synchronization patterns that are controllable in period and phase.Comment: 6 pages, 5 figures, accepted in Europhysics Letters (epljournal.edpsciences.org

    Heterogeneous Delays in Neural Networks

    Full text link
    We investigate heterogeneous coupling delays in complex networks of excitable elements described by the FitzHugh-Nagumo model. The effects of discrete as well as of uni- and bimodal continuous distributions are studied with a focus on different topologies, i.e., regular, small-world, and random networks. In the case of two discrete delay times resonance effects play a major role: Depending on the ratio of the delay times, various characteristic spiking scenarios, such as coherent or asynchronous spiking, arise. For continuous delay distributions different dynamical patterns emerge depending on the width of the distribution. For small distribution widths, we find highly synchronized spiking, while for intermediate widths only spiking with low degree of synchrony persists, which is associated with traveling disruptions, partial amplitude death, or subnetwork synchronization, depending sensitively on the network topology. If the inhomogeneity of the coupling delays becomes too large, global amplitude death is induced

    New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. II

    Full text link
    In the first part of this paper math-ph/0612078, a complete description of Q-conditional symmetries for two classes of reaction-diffusion-convection equations with power diffusivities is derived. It was shown that all the known results for reaction-diffusion equations with power diffusivities follow as particular cases from those obtained in math-ph/0612078 but not vise versa. In the second part the symmetries obtained in are successfully applied for constructing exact solutions of the relevant equations. In the particular case, new exact solutions of nonlinear reaction-diffusion-convection (RDC) equations arising in application and their natural generalizations are found

    Emergent global oscillations in heterogeneous excitable media: The example of pancreatic beta cells

    Full text link
    Using the standard van der Pol-FitzHugh-Nagumo excitable medium model I demonstrate a novel generic mechanism, diversity, that provokes the emergence of global oscillations from individually quiescent elements in heterogeneous excitable media. This mechanism may be operating in the mammalian pancreas, where excitable beta cells, quiescent when isolated, are found to oscillate when coupled despite the absence of a pacemaker region.Comment: See home page http://lec.ugr.es/~julya
    corecore